Matthew B Cooke, Kobie T Welch, Laura D Ramirez, Alice X Wen, David C Marciano, Christophe Herman
{"title":"GoldenBraid2.0大肠杆菌:一个全面和特征的肠道工具包。","authors":"Matthew B Cooke, Kobie T Welch, Laura D Ramirez, Alice X Wen, David C Marciano, Christophe Herman","doi":"10.1093/synbio/ysaf015","DOIUrl":null,"url":null,"abstract":"<p><p>Modular cloning systems streamline laboratory workflows by consolidating genetic 'parts' into reusable and modular collections, enabling researchers to fast-track strain construction. The GoldenBraid 2.0 modular cloning system utilizes the cutting property of type IIS restriction enzymes to create defined genetic 'grammars', which facilitate the reuse of standardized genetic parts and assembly of genetic parts in the right order. Here, we present a GoldenBraid 2.0 toolkit of genetic parts designed to accelerate cloning in the model bacterium <i>Escherichia coli</i>. This toolkit features 478 pre-made parts for gene expression and protein tagging as well as strains to expedite cloning and strain construction, enabling researchers to quickly generate functional plasmid-borne or chromosome-integrated expression constructs. In addition, we provide a complete laboratory manual with overviews of common reagent recipes, <i>E. coli</i> protocols, and community resources to promote toolkit utilization. By streamlining the assembly process, this resource will reduce the financial and temporal burdens of cloning and strain building in many laboratory settings.</p>","PeriodicalId":74902,"journal":{"name":"Synthetic biology (Oxford, England)","volume":"10 1","pages":"ysaf015"},"PeriodicalIF":2.5000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12415853/pdf/","citationCount":"0","resultStr":"{\"title\":\"GoldenBraid2.0 <i>E. coli</i>: a comprehensive and characterized toolkit for enterics.\",\"authors\":\"Matthew B Cooke, Kobie T Welch, Laura D Ramirez, Alice X Wen, David C Marciano, Christophe Herman\",\"doi\":\"10.1093/synbio/ysaf015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Modular cloning systems streamline laboratory workflows by consolidating genetic 'parts' into reusable and modular collections, enabling researchers to fast-track strain construction. The GoldenBraid 2.0 modular cloning system utilizes the cutting property of type IIS restriction enzymes to create defined genetic 'grammars', which facilitate the reuse of standardized genetic parts and assembly of genetic parts in the right order. Here, we present a GoldenBraid 2.0 toolkit of genetic parts designed to accelerate cloning in the model bacterium <i>Escherichia coli</i>. This toolkit features 478 pre-made parts for gene expression and protein tagging as well as strains to expedite cloning and strain construction, enabling researchers to quickly generate functional plasmid-borne or chromosome-integrated expression constructs. In addition, we provide a complete laboratory manual with overviews of common reagent recipes, <i>E. coli</i> protocols, and community resources to promote toolkit utilization. By streamlining the assembly process, this resource will reduce the financial and temporal burdens of cloning and strain building in many laboratory settings.</p>\",\"PeriodicalId\":74902,\"journal\":{\"name\":\"Synthetic biology (Oxford, England)\",\"volume\":\"10 1\",\"pages\":\"ysaf015\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12415853/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Synthetic biology (Oxford, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/synbio/ysaf015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synthetic biology (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/synbio/ysaf015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
GoldenBraid2.0 E. coli: a comprehensive and characterized toolkit for enterics.
Modular cloning systems streamline laboratory workflows by consolidating genetic 'parts' into reusable and modular collections, enabling researchers to fast-track strain construction. The GoldenBraid 2.0 modular cloning system utilizes the cutting property of type IIS restriction enzymes to create defined genetic 'grammars', which facilitate the reuse of standardized genetic parts and assembly of genetic parts in the right order. Here, we present a GoldenBraid 2.0 toolkit of genetic parts designed to accelerate cloning in the model bacterium Escherichia coli. This toolkit features 478 pre-made parts for gene expression and protein tagging as well as strains to expedite cloning and strain construction, enabling researchers to quickly generate functional plasmid-borne or chromosome-integrated expression constructs. In addition, we provide a complete laboratory manual with overviews of common reagent recipes, E. coli protocols, and community resources to promote toolkit utilization. By streamlining the assembly process, this resource will reduce the financial and temporal burdens of cloning and strain building in many laboratory settings.