{"title":"人工智能驱动的糖尿病视网膜病变筛查在公共卫生机构的真实世界评估:验证和实施研究。","authors":"Mona Duggal, Anshul Chauhan, Vishali Gupta, Ankita Kankaria, Deepmala Budhija, Priyanka Verma, Vaibhav Miglani, Preeti Syal, Gagandeep Kaur, Lakshay Kumar, Naveen Mutyala, Rishabh Bezbaruah, Nayanshi Sood, Ashleigh Kernohan, Geeta Menon, Luke Vale","doi":"10.2196/67529","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Artificial intelligence (AI) algorithms offer an effective solution to alleviate the burden of diabetic retinopathy (DR) screening in public health settings. However, there are challenges in translating diagnostic performance and its application when deployed in real-world conditions.</p><p><strong>Objective: </strong>This study aimed to assess the technical feasibility of integration and diagnostic performance of validated DR screening (DRS) AI algorithms in real-world outpatient public health settings.</p><p><strong>Methods: </strong>Prior to integrating an AI algorithm for DR screening, the study involved several steps: (1) Five AI companies, including four from India and one international company, were invited to evaluate their diagnostic performance using low-cost nonmydriatic fundus cameras in public health settings; (2) The AI algorithms were prospectively validated on fundus images from 250 people with diabetes mellitus, captured by a trained optometrist in public health settings in Chandigarh Tricity in North India. The performance evaluation used diagnostic metrics, including sensitivity, specificity, and accuracy, compared to human grader assessments; (3) The AI algorithm with better diagnostic performance was integrated into a low-cost screening camera deployed at a community health center (CHC) in the Moga district of Punjab, India. For AI algorithm analysis, a trained health system optometrist captured nonmydriatic images of 343 patients.</p><p><strong>Results: </strong>Three web-based AI screening companies agreed to participate, while one declined and one chose to withdraw due to low specificity identified during the interim analysis. The three AI algorithms demonstrated variable diagnostic performance, with sensitivity (60%-80%) and specificity (14%-96%). Upon integration, the better-performing algorithm AI-3 (sensitivity: 68%, specificity: 96, and accuracy: 88·43%) demonstrated high sensitivity of image gradability (99.5%), DR detection (99.6%), and referral DR (79%) at the CHC.</p><p><strong>Conclusions: </strong>This study highlights the importance of systematic AI validation for responsible clinical integration, demonstrating the potential of DRS to improve health care access in resource-limited public health settings.</p>","PeriodicalId":56334,"journal":{"name":"JMIR Medical Informatics","volume":"13 ","pages":"e67529"},"PeriodicalIF":3.8000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12419978/pdf/","citationCount":"0","resultStr":"{\"title\":\"Real-World Evaluation of AI-Driven Diabetic Retinopathy Screening in Public Health Settings: Validation and Implementation Study.\",\"authors\":\"Mona Duggal, Anshul Chauhan, Vishali Gupta, Ankita Kankaria, Deepmala Budhija, Priyanka Verma, Vaibhav Miglani, Preeti Syal, Gagandeep Kaur, Lakshay Kumar, Naveen Mutyala, Rishabh Bezbaruah, Nayanshi Sood, Ashleigh Kernohan, Geeta Menon, Luke Vale\",\"doi\":\"10.2196/67529\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Artificial intelligence (AI) algorithms offer an effective solution to alleviate the burden of diabetic retinopathy (DR) screening in public health settings. However, there are challenges in translating diagnostic performance and its application when deployed in real-world conditions.</p><p><strong>Objective: </strong>This study aimed to assess the technical feasibility of integration and diagnostic performance of validated DR screening (DRS) AI algorithms in real-world outpatient public health settings.</p><p><strong>Methods: </strong>Prior to integrating an AI algorithm for DR screening, the study involved several steps: (1) Five AI companies, including four from India and one international company, were invited to evaluate their diagnostic performance using low-cost nonmydriatic fundus cameras in public health settings; (2) The AI algorithms were prospectively validated on fundus images from 250 people with diabetes mellitus, captured by a trained optometrist in public health settings in Chandigarh Tricity in North India. The performance evaluation used diagnostic metrics, including sensitivity, specificity, and accuracy, compared to human grader assessments; (3) The AI algorithm with better diagnostic performance was integrated into a low-cost screening camera deployed at a community health center (CHC) in the Moga district of Punjab, India. For AI algorithm analysis, a trained health system optometrist captured nonmydriatic images of 343 patients.</p><p><strong>Results: </strong>Three web-based AI screening companies agreed to participate, while one declined and one chose to withdraw due to low specificity identified during the interim analysis. The three AI algorithms demonstrated variable diagnostic performance, with sensitivity (60%-80%) and specificity (14%-96%). Upon integration, the better-performing algorithm AI-3 (sensitivity: 68%, specificity: 96, and accuracy: 88·43%) demonstrated high sensitivity of image gradability (99.5%), DR detection (99.6%), and referral DR (79%) at the CHC.</p><p><strong>Conclusions: </strong>This study highlights the importance of systematic AI validation for responsible clinical integration, demonstrating the potential of DRS to improve health care access in resource-limited public health settings.</p>\",\"PeriodicalId\":56334,\"journal\":{\"name\":\"JMIR Medical Informatics\",\"volume\":\"13 \",\"pages\":\"e67529\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12419978/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JMIR Medical Informatics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2196/67529\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICAL INFORMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR Medical Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2196/67529","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
Real-World Evaluation of AI-Driven Diabetic Retinopathy Screening in Public Health Settings: Validation and Implementation Study.
Background: Artificial intelligence (AI) algorithms offer an effective solution to alleviate the burden of diabetic retinopathy (DR) screening in public health settings. However, there are challenges in translating diagnostic performance and its application when deployed in real-world conditions.
Objective: This study aimed to assess the technical feasibility of integration and diagnostic performance of validated DR screening (DRS) AI algorithms in real-world outpatient public health settings.
Methods: Prior to integrating an AI algorithm for DR screening, the study involved several steps: (1) Five AI companies, including four from India and one international company, were invited to evaluate their diagnostic performance using low-cost nonmydriatic fundus cameras in public health settings; (2) The AI algorithms were prospectively validated on fundus images from 250 people with diabetes mellitus, captured by a trained optometrist in public health settings in Chandigarh Tricity in North India. The performance evaluation used diagnostic metrics, including sensitivity, specificity, and accuracy, compared to human grader assessments; (3) The AI algorithm with better diagnostic performance was integrated into a low-cost screening camera deployed at a community health center (CHC) in the Moga district of Punjab, India. For AI algorithm analysis, a trained health system optometrist captured nonmydriatic images of 343 patients.
Results: Three web-based AI screening companies agreed to participate, while one declined and one chose to withdraw due to low specificity identified during the interim analysis. The three AI algorithms demonstrated variable diagnostic performance, with sensitivity (60%-80%) and specificity (14%-96%). Upon integration, the better-performing algorithm AI-3 (sensitivity: 68%, specificity: 96, and accuracy: 88·43%) demonstrated high sensitivity of image gradability (99.5%), DR detection (99.6%), and referral DR (79%) at the CHC.
Conclusions: This study highlights the importance of systematic AI validation for responsible clinical integration, demonstrating the potential of DRS to improve health care access in resource-limited public health settings.
期刊介绍:
JMIR Medical Informatics (JMI, ISSN 2291-9694) is a top-rated, tier A journal which focuses on clinical informatics, big data in health and health care, decision support for health professionals, electronic health records, ehealth infrastructures and implementation. It has a focus on applied, translational research, with a broad readership including clinicians, CIOs, engineers, industry and health informatics professionals.
Published by JMIR Publications, publisher of the Journal of Medical Internet Research (JMIR), the leading eHealth/mHealth journal (Impact Factor 2016: 5.175), JMIR Med Inform has a slightly different scope (emphasizing more on applications for clinicians and health professionals rather than consumers/citizens, which is the focus of JMIR), publishes even faster, and also allows papers which are more technical or more formative than what would be published in the Journal of Medical Internet Research.