dehalococoides亚种和Dehalogenimonas的基因组特征阐明了高盐条件下三氯乙烯的完全脱氯作用。

IF 6.1 Q1 ECOLOGY
ISME communications Pub Date : 2025-06-19 eCollection Date: 2025-01-01 DOI:10.1093/ismeco/ycaf101
Wei-Yu Chen, Yun-Chi Lan, Jiung-Wen Chen, Jer-Horng Wu
{"title":"dehalococoides亚种和Dehalogenimonas的基因组特征阐明了高盐条件下三氯乙烯的完全脱氯作用。","authors":"Wei-Yu Chen, Yun-Chi Lan, Jiung-Wen Chen, Jer-Horng Wu","doi":"10.1093/ismeco/ycaf101","DOIUrl":null,"url":null,"abstract":"<p><p>Global salinization increasingly threatens ecosystem integrity and the regulation of biogeochemical cycles. Our study reveals novel insights into the microbial contributions to the organohalide decomposition in saline environments, demonstrating the unprecedented ability of organohalide-respiring bacteria <i>Dehalococcoides</i> and <i>Dehalogenimonas</i> to completely dechlorinate trichloroethene to non-toxic ethene under hypersaline conditions (up to 31.3 g/L) in long-term operations. Using gradient salinity reactors and metagenomic analyses, we identified the evolved genomic features associated with high-salt tolerance. The Cornell subgroup of <i>Dehalococcoides</i> and <i>Dehalogenimonas</i> exhibit significantly lower average protein isoelectric points and retain the ribosomal protein L33p gene, unlike the Victoria and Pinellas subgroups. <i>Dehalococcoides</i> shows subspecies-level genomic divergence and unique codon usage biases. Intriguingly, the L33p gene is found in diverse bacterial phyla from saline environments, suggesting it may provide a growth advantage under salt stress. These genomic traits, hypothesized to enhance salt tolerance and dechlorination efficiency under salt stress, correlate with performance at elevated salinity. Our findings advance the understanding of microbial salt adaptation mechanisms and support the development of bioremediation strategies tailored for saline environments.</p>","PeriodicalId":73516,"journal":{"name":"ISME communications","volume":"5 1","pages":"ycaf101"},"PeriodicalIF":6.1000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12415852/pdf/","citationCount":"0","resultStr":"{\"title\":\"Genomic personalities of <i>Dehalococcoides</i> subspecies and <i>Dehalogenimonas</i> illuminate complete trichloroethene dechlorination in high-salt conditions.\",\"authors\":\"Wei-Yu Chen, Yun-Chi Lan, Jiung-Wen Chen, Jer-Horng Wu\",\"doi\":\"10.1093/ismeco/ycaf101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Global salinization increasingly threatens ecosystem integrity and the regulation of biogeochemical cycles. Our study reveals novel insights into the microbial contributions to the organohalide decomposition in saline environments, demonstrating the unprecedented ability of organohalide-respiring bacteria <i>Dehalococcoides</i> and <i>Dehalogenimonas</i> to completely dechlorinate trichloroethene to non-toxic ethene under hypersaline conditions (up to 31.3 g/L) in long-term operations. Using gradient salinity reactors and metagenomic analyses, we identified the evolved genomic features associated with high-salt tolerance. The Cornell subgroup of <i>Dehalococcoides</i> and <i>Dehalogenimonas</i> exhibit significantly lower average protein isoelectric points and retain the ribosomal protein L33p gene, unlike the Victoria and Pinellas subgroups. <i>Dehalococcoides</i> shows subspecies-level genomic divergence and unique codon usage biases. Intriguingly, the L33p gene is found in diverse bacterial phyla from saline environments, suggesting it may provide a growth advantage under salt stress. These genomic traits, hypothesized to enhance salt tolerance and dechlorination efficiency under salt stress, correlate with performance at elevated salinity. Our findings advance the understanding of microbial salt adaptation mechanisms and support the development of bioremediation strategies tailored for saline environments.</p>\",\"PeriodicalId\":73516,\"journal\":{\"name\":\"ISME communications\",\"volume\":\"5 1\",\"pages\":\"ycaf101\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12415852/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISME communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/ismeco/ycaf101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISME communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ismeco/ycaf101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

全球盐渍化日益威胁着生态系统的完整性和生物地球化学循环的调节。我们的研究揭示了微生物对盐环境中有机卤化物分解的贡献的新见解,证明了有机卤化物呼吸细菌dehalococides和Dehalogenimonas在长期高盐条件下(高达31.3 g/L)将三氯乙烯完全脱氯为无毒乙烯的前所未有的能力。利用梯度盐反应器和宏基因组分析,我们确定了与高盐耐受性相关的进化基因组特征。与Victoria和Pinellas亚群不同,Dehalococcoides和Dehalogenimonas的Cornell亚群表现出明显较低的平均蛋白质等电点,并保留了核糖体蛋白L33p基因。dehalococoides表现出亚种水平的基因组差异和独特的密码子使用偏好。有趣的是,L33p基因在不同的盐环境细菌门中被发现,这表明它可能在盐胁迫下提供了生长优势。这些基因组性状被推测可以增强盐胁迫下的耐盐性和脱氯效率,与盐胁迫下的表现相关。我们的研究结果促进了对微生物盐适应机制的理解,并支持针对盐环境量身定制的生物修复策略的开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Genomic personalities of <i>Dehalococcoides</i> subspecies and <i>Dehalogenimonas</i> illuminate complete trichloroethene dechlorination in high-salt conditions.

Genomic personalities of <i>Dehalococcoides</i> subspecies and <i>Dehalogenimonas</i> illuminate complete trichloroethene dechlorination in high-salt conditions.

Genomic personalities of <i>Dehalococcoides</i> subspecies and <i>Dehalogenimonas</i> illuminate complete trichloroethene dechlorination in high-salt conditions.

Genomic personalities of Dehalococcoides subspecies and Dehalogenimonas illuminate complete trichloroethene dechlorination in high-salt conditions.

Global salinization increasingly threatens ecosystem integrity and the regulation of biogeochemical cycles. Our study reveals novel insights into the microbial contributions to the organohalide decomposition in saline environments, demonstrating the unprecedented ability of organohalide-respiring bacteria Dehalococcoides and Dehalogenimonas to completely dechlorinate trichloroethene to non-toxic ethene under hypersaline conditions (up to 31.3 g/L) in long-term operations. Using gradient salinity reactors and metagenomic analyses, we identified the evolved genomic features associated with high-salt tolerance. The Cornell subgroup of Dehalococcoides and Dehalogenimonas exhibit significantly lower average protein isoelectric points and retain the ribosomal protein L33p gene, unlike the Victoria and Pinellas subgroups. Dehalococcoides shows subspecies-level genomic divergence and unique codon usage biases. Intriguingly, the L33p gene is found in diverse bacterial phyla from saline environments, suggesting it may provide a growth advantage under salt stress. These genomic traits, hypothesized to enhance salt tolerance and dechlorination efficiency under salt stress, correlate with performance at elevated salinity. Our findings advance the understanding of microbial salt adaptation mechanisms and support the development of bioremediation strategies tailored for saline environments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信