走向更现实的职业道路预测:评价与方法。

IF 2.4 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Frontiers in Big Data Pub Date : 2025-08-25 eCollection Date: 2025-01-01 DOI:10.3389/fdata.2025.1564521
Elena Senger, Yuri Campbell, Rob van der Goot, Barbara Plank
{"title":"走向更现实的职业道路预测:评价与方法。","authors":"Elena Senger, Yuri Campbell, Rob van der Goot, Barbara Plank","doi":"10.3389/fdata.2025.1564521","DOIUrl":null,"url":null,"abstract":"<p><p>Predicting career trajectories is a complex yet impactful task, offering significant benefits for personalized career counseling, recruitment optimization, and workforce planning. However, effective career path prediction (CPP) modeling faces challenges including highly variable career trajectories, free-text resume data, and limited publicly available benchmark datasets. In this study, we present a comprehensive comparative evaluation of CPP models-linear projection, multilayer perceptron (MLP), LSTM, and large language models (LLMs)-across multiple input settings and two recently introduced public datasets. Our contributions are threefold: (1) we propose novel model variants, including an MLP extension and a standardized LLM approach, (2) we systematically evaluate model performance across input types (titles only vs. title+description, standardized vs. free-text), and (3) we investigate the role of synthetic data and fine-tuning strategies in addressing data scarcity and improving model generalization. Additionally, we provide a detailed qualitative analysis of prediction behaviors across industries, career lengths, and transitions. Our findings establish new baselines, reveal the trade-offs of different modeling strategies, and offer practical insights for deploying CPP systems in real-world settings.</p>","PeriodicalId":52859,"journal":{"name":"Frontiers in Big Data","volume":"8 ","pages":"1564521"},"PeriodicalIF":2.4000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12415007/pdf/","citationCount":"0","resultStr":"{\"title\":\"Toward more realistic career path prediction: evaluation and methods.\",\"authors\":\"Elena Senger, Yuri Campbell, Rob van der Goot, Barbara Plank\",\"doi\":\"10.3389/fdata.2025.1564521\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Predicting career trajectories is a complex yet impactful task, offering significant benefits for personalized career counseling, recruitment optimization, and workforce planning. However, effective career path prediction (CPP) modeling faces challenges including highly variable career trajectories, free-text resume data, and limited publicly available benchmark datasets. In this study, we present a comprehensive comparative evaluation of CPP models-linear projection, multilayer perceptron (MLP), LSTM, and large language models (LLMs)-across multiple input settings and two recently introduced public datasets. Our contributions are threefold: (1) we propose novel model variants, including an MLP extension and a standardized LLM approach, (2) we systematically evaluate model performance across input types (titles only vs. title+description, standardized vs. free-text), and (3) we investigate the role of synthetic data and fine-tuning strategies in addressing data scarcity and improving model generalization. Additionally, we provide a detailed qualitative analysis of prediction behaviors across industries, career lengths, and transitions. Our findings establish new baselines, reveal the trade-offs of different modeling strategies, and offer practical insights for deploying CPP systems in real-world settings.</p>\",\"PeriodicalId\":52859,\"journal\":{\"name\":\"Frontiers in Big Data\",\"volume\":\"8 \",\"pages\":\"1564521\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12415007/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Big Data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fdata.2025.1564521\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Big Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fdata.2025.1564521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

预测职业轨迹是一项复杂而又有影响力的任务,它为个性化的职业咨询、招聘优化和劳动力规划提供了巨大的好处。然而,有效的职业路径预测(CPP)建模面临着各种挑战,包括高度可变的职业轨迹、自由文本简历数据和有限的公开基准数据集。在这项研究中,我们对CPP模型——线性投影、多层感知器(MLP)、LSTM和大型语言模型(llm)——在多个输入设置和两个最近引入的公共数据集上进行了全面的比较评估。我们的贡献有三个方面:(1)我们提出了新的模型变体,包括MLP扩展和标准化的LLM方法;(2)我们系统地评估了不同输入类型(仅标题vs标题+描述,标准化vs自由文本)的模型性能;(3)我们研究了合成数据和微调策略在解决数据稀缺性和提高模型泛化方面的作用。此外,我们提供了一个详细的定性分析预测行为跨行业,职业生涯长度,和过渡。我们的发现建立了新的基线,揭示了不同建模策略的权衡,并为在现实环境中部署CPP系统提供了实际的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Toward more realistic career path prediction: evaluation and methods.

Toward more realistic career path prediction: evaluation and methods.

Toward more realistic career path prediction: evaluation and methods.

Toward more realistic career path prediction: evaluation and methods.

Predicting career trajectories is a complex yet impactful task, offering significant benefits for personalized career counseling, recruitment optimization, and workforce planning. However, effective career path prediction (CPP) modeling faces challenges including highly variable career trajectories, free-text resume data, and limited publicly available benchmark datasets. In this study, we present a comprehensive comparative evaluation of CPP models-linear projection, multilayer perceptron (MLP), LSTM, and large language models (LLMs)-across multiple input settings and two recently introduced public datasets. Our contributions are threefold: (1) we propose novel model variants, including an MLP extension and a standardized LLM approach, (2) we systematically evaluate model performance across input types (titles only vs. title+description, standardized vs. free-text), and (3) we investigate the role of synthetic data and fine-tuning strategies in addressing data scarcity and improving model generalization. Additionally, we provide a detailed qualitative analysis of prediction behaviors across industries, career lengths, and transitions. Our findings establish new baselines, reveal the trade-offs of different modeling strategies, and offer practical insights for deploying CPP systems in real-world settings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.20
自引率
3.20%
发文量
122
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信