Thomas Gosselin-Monplaisir, Brice Enjalbert, Sandrine Uttenweiler-Joseph, Jean-Charles Portais, Stéphanie Heux, Pierre Millard
{"title":"细菌、酵母和哺乳动物细胞的溢出代谢:不同的名字,相同的游戏。","authors":"Thomas Gosselin-Monplaisir, Brice Enjalbert, Sandrine Uttenweiler-Joseph, Jean-Charles Portais, Stéphanie Heux, Pierre Millard","doi":"10.1038/s44320-025-00145-x","DOIUrl":null,"url":null,"abstract":"<p><p>Overflow metabolism refers to the widespread phenomenon of cells excreting metabolic by-products into their environment. Although overflow is observed in virtually all living organisms, it has been studied independently and given different names in different species. This review highlights emerging evidence that overflow metabolism is governed by common principles in prokaryotic and eukaryotic organisms. We examine the similarities and specificities in the structure, function, and regulation of overflow pathways in bacterial, yeast, and mammalian cells, with a focus on model species and common by-products. Our reinterpretation of previous findings points to the existence of universal principles governing overflow fluxes. We also emphasize the need to reconsider the roles of overflow metabolites, not as cellular stress-inducing toxic waste, but as nutrients and regulators, influencing metabolism at both cellular and community levels, often to the benefit of the producing cells. Finally, we review prevailing theories of overflow metabolism and explore avenues toward a potential unified theory of overflow. This review offers fundamental insights into this widespread metabolic process and proposes a conceptual foundation for future research.</p>","PeriodicalId":18906,"journal":{"name":"Molecular Systems Biology","volume":" ","pages":""},"PeriodicalIF":7.7000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Overflow metabolism in bacterial, yeast, and mammalian cells: different names, same game.\",\"authors\":\"Thomas Gosselin-Monplaisir, Brice Enjalbert, Sandrine Uttenweiler-Joseph, Jean-Charles Portais, Stéphanie Heux, Pierre Millard\",\"doi\":\"10.1038/s44320-025-00145-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Overflow metabolism refers to the widespread phenomenon of cells excreting metabolic by-products into their environment. Although overflow is observed in virtually all living organisms, it has been studied independently and given different names in different species. This review highlights emerging evidence that overflow metabolism is governed by common principles in prokaryotic and eukaryotic organisms. We examine the similarities and specificities in the structure, function, and regulation of overflow pathways in bacterial, yeast, and mammalian cells, with a focus on model species and common by-products. Our reinterpretation of previous findings points to the existence of universal principles governing overflow fluxes. We also emphasize the need to reconsider the roles of overflow metabolites, not as cellular stress-inducing toxic waste, but as nutrients and regulators, influencing metabolism at both cellular and community levels, often to the benefit of the producing cells. Finally, we review prevailing theories of overflow metabolism and explore avenues toward a potential unified theory of overflow. This review offers fundamental insights into this widespread metabolic process and proposes a conceptual foundation for future research.</p>\",\"PeriodicalId\":18906,\"journal\":{\"name\":\"Molecular Systems Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2025-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Systems Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s44320-025-00145-x\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Systems Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s44320-025-00145-x","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Overflow metabolism in bacterial, yeast, and mammalian cells: different names, same game.
Overflow metabolism refers to the widespread phenomenon of cells excreting metabolic by-products into their environment. Although overflow is observed in virtually all living organisms, it has been studied independently and given different names in different species. This review highlights emerging evidence that overflow metabolism is governed by common principles in prokaryotic and eukaryotic organisms. We examine the similarities and specificities in the structure, function, and regulation of overflow pathways in bacterial, yeast, and mammalian cells, with a focus on model species and common by-products. Our reinterpretation of previous findings points to the existence of universal principles governing overflow fluxes. We also emphasize the need to reconsider the roles of overflow metabolites, not as cellular stress-inducing toxic waste, but as nutrients and regulators, influencing metabolism at both cellular and community levels, often to the benefit of the producing cells. Finally, we review prevailing theories of overflow metabolism and explore avenues toward a potential unified theory of overflow. This review offers fundamental insights into this widespread metabolic process and proposes a conceptual foundation for future research.
期刊介绍:
Systems biology is a field that aims to understand complex biological systems by studying their components and how they interact. It is an integrative discipline that seeks to explain the properties and behavior of these systems.
Molecular Systems Biology is a scholarly journal that publishes top-notch research in the areas of systems biology, synthetic biology, and systems medicine. It is an open access journal, meaning that its content is freely available to readers, and it is peer-reviewed to ensure the quality of the published work.