DeepRNAac4C:用于RNA n4 -乙酰胞苷位点预测的混合深度学习框架。

IF 2.8 3区 生物学 Q2 GENETICS & HEREDITY
Frontiers in Genetics Pub Date : 2025-08-25 eCollection Date: 2025-01-01 DOI:10.3389/fgene.2025.1622899
Guohua Huang, Runjuan Xiao, Chunying Peng, Jinyun Jiang, Weihong Chen
{"title":"DeepRNAac4C:用于RNA n4 -乙酰胞苷位点预测的混合深度学习框架。","authors":"Guohua Huang, Runjuan Xiao, Chunying Peng, Jinyun Jiang, Weihong Chen","doi":"10.3389/fgene.2025.1622899","DOIUrl":null,"url":null,"abstract":"<p><p>RNA N4-acetylcytidine (ac4C) is a crucial chemical modification involved in various biological processes, influencing RNA properties and functions. Accurate prediction of RNA ac4C sites is essential for understanding the roles of RNA molecules in gene expression and cellular regulation. While existing methods have made progress in ac4C site prediction, they still struggle with limited accuracy and generalization. To address these challenges, we propose <i>DeepRNAac4C</i>, a deep learning framework for RNA ac4C sites prediction. <i>DeepRNAac4C</i> integrates residual neural networks, convolutional neural networks (CNN), bidirectional long short-term memory networks (BiLSTM), and bidirectional gated recurrent units (BiGRU) to effectively capture both local and global sequence features. We extensively evaluated <i>DeepRNAac4C</i> against state-of-the-art methods using 10-fold cross-validation and independent tests. The results show that <i>DeepRNAac4C</i> outperforms existing approaches, achieving an accuracy of 0.8410. The proposed <i>DeepRNAac4C</i> improves predictive accuracy and model robustness, providing an effective tool for identifying RNA ac4C sites and deepening our understanding of RNA modifications and their functional roles in biological systems.</p>","PeriodicalId":12750,"journal":{"name":"Frontiers in Genetics","volume":"16 ","pages":"1622899"},"PeriodicalIF":2.8000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12414787/pdf/","citationCount":"0","resultStr":"{\"title\":\"DeepRNAac4C: a hybrid deep learning framework for RNA N4-acetylcytidine site prediction.\",\"authors\":\"Guohua Huang, Runjuan Xiao, Chunying Peng, Jinyun Jiang, Weihong Chen\",\"doi\":\"10.3389/fgene.2025.1622899\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>RNA N4-acetylcytidine (ac4C) is a crucial chemical modification involved in various biological processes, influencing RNA properties and functions. Accurate prediction of RNA ac4C sites is essential for understanding the roles of RNA molecules in gene expression and cellular regulation. While existing methods have made progress in ac4C site prediction, they still struggle with limited accuracy and generalization. To address these challenges, we propose <i>DeepRNAac4C</i>, a deep learning framework for RNA ac4C sites prediction. <i>DeepRNAac4C</i> integrates residual neural networks, convolutional neural networks (CNN), bidirectional long short-term memory networks (BiLSTM), and bidirectional gated recurrent units (BiGRU) to effectively capture both local and global sequence features. We extensively evaluated <i>DeepRNAac4C</i> against state-of-the-art methods using 10-fold cross-validation and independent tests. The results show that <i>DeepRNAac4C</i> outperforms existing approaches, achieving an accuracy of 0.8410. The proposed <i>DeepRNAac4C</i> improves predictive accuracy and model robustness, providing an effective tool for identifying RNA ac4C sites and deepening our understanding of RNA modifications and their functional roles in biological systems.</p>\",\"PeriodicalId\":12750,\"journal\":{\"name\":\"Frontiers in Genetics\",\"volume\":\"16 \",\"pages\":\"1622899\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12414787/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3389/fgene.2025.1622899\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fgene.2025.1622899","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

RNA n4 -乙酰胞苷(ac4C)是一种重要的化学修饰,参与多种生物过程,影响RNA的性质和功能。准确预测RNA ac4C位点对于理解RNA分子在基因表达和细胞调控中的作用至关重要。虽然现有的方法在ac4C位点预测方面取得了进展,但它们仍然存在有限的准确性和泛化问题。为了解决这些挑战,我们提出了DeepRNAac4C,这是一个用于RNAac4C位点预测的深度学习框架。DeepRNAac4C集成残差神经网络、卷积神经网络(CNN)、双向长短期记忆网络(BiLSTM)和双向门控循环单元(BiGRU),有效捕获局部和全局序列特征。我们使用10倍交叉验证和独立测试对DeepRNAac4C与最先进的方法进行了广泛评估。结果表明,DeepRNAac4C优于现有的方法,达到了0.8410的精度。提出的DeepRNAac4C提高了预测准确性和模型鲁棒性,为识别RNAac4C位点提供了有效的工具,并加深了我们对RNA修饰及其在生物系统中的功能作用的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

DeepRNAac4C: a hybrid deep learning framework for RNA N4-acetylcytidine site prediction.

DeepRNAac4C: a hybrid deep learning framework for RNA N4-acetylcytidine site prediction.

DeepRNAac4C: a hybrid deep learning framework for RNA N4-acetylcytidine site prediction.

DeepRNAac4C: a hybrid deep learning framework for RNA N4-acetylcytidine site prediction.

RNA N4-acetylcytidine (ac4C) is a crucial chemical modification involved in various biological processes, influencing RNA properties and functions. Accurate prediction of RNA ac4C sites is essential for understanding the roles of RNA molecules in gene expression and cellular regulation. While existing methods have made progress in ac4C site prediction, they still struggle with limited accuracy and generalization. To address these challenges, we propose DeepRNAac4C, a deep learning framework for RNA ac4C sites prediction. DeepRNAac4C integrates residual neural networks, convolutional neural networks (CNN), bidirectional long short-term memory networks (BiLSTM), and bidirectional gated recurrent units (BiGRU) to effectively capture both local and global sequence features. We extensively evaluated DeepRNAac4C against state-of-the-art methods using 10-fold cross-validation and independent tests. The results show that DeepRNAac4C outperforms existing approaches, achieving an accuracy of 0.8410. The proposed DeepRNAac4C improves predictive accuracy and model robustness, providing an effective tool for identifying RNA ac4C sites and deepening our understanding of RNA modifications and their functional roles in biological systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Genetics
Frontiers in Genetics Biochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
5.50
自引率
8.10%
发文量
3491
审稿时长
14 weeks
期刊介绍: Frontiers in Genetics publishes rigorously peer-reviewed research on genes and genomes relating to all the domains of life, from humans to plants to livestock and other model organisms. Led by an outstanding Editorial Board of the world’s leading experts, this multidisciplinary, open-access journal is at the forefront of communicating cutting-edge research to researchers, academics, clinicians, policy makers and the public. The study of inheritance and the impact of the genome on various biological processes is well documented. However, the majority of discoveries are still to come. A new era is seeing major developments in the function and variability of the genome, the use of genetic and genomic tools and the analysis of the genetic basis of various biological phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信