Sunil Kumar Pradhan, Hui Zhang, Ksenia G Kolobynina, Alexander Rapp, Maria Arroyo, M Cristina Cardoso
{"title":"H3K36me3与中心周围异染色质的动态关联调节其复制时间。","authors":"Sunil Kumar Pradhan, Hui Zhang, Ksenia G Kolobynina, Alexander Rapp, Maria Arroyo, M Cristina Cardoso","doi":"10.1038/s44319-025-00575-6","DOIUrl":null,"url":null,"abstract":"<p><p>The flexibility of the spatio-temporal genome replication program during development and disease highlights the regulatory role of plastic epigenetic mechanisms over genetic determinants. Histone post-translational modifications are broadly implicated in replication timing control, yet the specific mechanisms through which individual histone marks influence replication dynamics, particularly in heterochromatin, remain unclear. Here, we demonstrate that H3K36me3 dynamically enriches at pericentromeric heterochromatin, composed of major satellite DNA repeats, prior to replication during mid S phase in mouse embryonic stem cells. By knocking down lysine 36-specific methyltransferases or by targeting the H3K36M oncohistone to pericentromeric heterochromatin, we reduce global or local H3K36me3 levels, respectively, revealing its essential role in preserving the replication timing of constitutive heterochromatin. Loss of H3K36me3 accompanies increased RNA polymerase II serine-5 phosphorylation and lowered major satellite RNA levels, indicating transcriptional dysregulation. Notably, we identify a strand-specific contribution of major satellite forward transcripts in regulating the replication timing of constitutive heterochromatin and maintaining chromatin stability, highlighting the importance of non-coding RNAs as critical regulators of replication timing.</p>","PeriodicalId":11541,"journal":{"name":"EMBO Reports","volume":" ","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic association of H3K36me3 with pericentromeric heterochromatin regulates its replication time.\",\"authors\":\"Sunil Kumar Pradhan, Hui Zhang, Ksenia G Kolobynina, Alexander Rapp, Maria Arroyo, M Cristina Cardoso\",\"doi\":\"10.1038/s44319-025-00575-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The flexibility of the spatio-temporal genome replication program during development and disease highlights the regulatory role of plastic epigenetic mechanisms over genetic determinants. Histone post-translational modifications are broadly implicated in replication timing control, yet the specific mechanisms through which individual histone marks influence replication dynamics, particularly in heterochromatin, remain unclear. Here, we demonstrate that H3K36me3 dynamically enriches at pericentromeric heterochromatin, composed of major satellite DNA repeats, prior to replication during mid S phase in mouse embryonic stem cells. By knocking down lysine 36-specific methyltransferases or by targeting the H3K36M oncohistone to pericentromeric heterochromatin, we reduce global or local H3K36me3 levels, respectively, revealing its essential role in preserving the replication timing of constitutive heterochromatin. Loss of H3K36me3 accompanies increased RNA polymerase II serine-5 phosphorylation and lowered major satellite RNA levels, indicating transcriptional dysregulation. Notably, we identify a strand-specific contribution of major satellite forward transcripts in regulating the replication timing of constitutive heterochromatin and maintaining chromatin stability, highlighting the importance of non-coding RNAs as critical regulators of replication timing.</p>\",\"PeriodicalId\":11541,\"journal\":{\"name\":\"EMBO Reports\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EMBO Reports\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s44319-025-00575-6\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBO Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s44319-025-00575-6","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Dynamic association of H3K36me3 with pericentromeric heterochromatin regulates its replication time.
The flexibility of the spatio-temporal genome replication program during development and disease highlights the regulatory role of plastic epigenetic mechanisms over genetic determinants. Histone post-translational modifications are broadly implicated in replication timing control, yet the specific mechanisms through which individual histone marks influence replication dynamics, particularly in heterochromatin, remain unclear. Here, we demonstrate that H3K36me3 dynamically enriches at pericentromeric heterochromatin, composed of major satellite DNA repeats, prior to replication during mid S phase in mouse embryonic stem cells. By knocking down lysine 36-specific methyltransferases or by targeting the H3K36M oncohistone to pericentromeric heterochromatin, we reduce global or local H3K36me3 levels, respectively, revealing its essential role in preserving the replication timing of constitutive heterochromatin. Loss of H3K36me3 accompanies increased RNA polymerase II serine-5 phosphorylation and lowered major satellite RNA levels, indicating transcriptional dysregulation. Notably, we identify a strand-specific contribution of major satellite forward transcripts in regulating the replication timing of constitutive heterochromatin and maintaining chromatin stability, highlighting the importance of non-coding RNAs as critical regulators of replication timing.
期刊介绍:
EMBO Reports is a scientific journal that specializes in publishing research articles in the fields of molecular biology, cell biology, and developmental biology. The journal is known for its commitment to publishing high-quality, impactful research that provides novel physiological and functional insights. These insights are expected to be supported by robust evidence, with independent lines of inquiry validating the findings.
The journal's scope includes both long and short-format papers, catering to different types of research contributions. It values studies that:
Communicate major findings: Articles that report significant discoveries or advancements in the understanding of biological processes at the molecular, cellular, and developmental levels.
Confirm important findings: Research that validates or supports existing knowledge in the field, reinforcing the reliability of previous studies.
Refute prominent claims: Studies that challenge or disprove widely accepted ideas or hypotheses in the biosciences, contributing to the correction and evolution of scientific understanding.
Present null data: Papers that report negative results or findings that do not support a particular hypothesis, which are crucial for the scientific process as they help to refine or redirect research efforts.
EMBO Reports is dedicated to maintaining high standards of scientific rigor and integrity, ensuring that the research it publishes contributes meaningfully to the advancement of knowledge in the life sciences. By covering a broad spectrum of topics and encouraging the publication of both positive and negative results, the journal plays a vital role in promoting a comprehensive and balanced view of scientific inquiry.