展开光子储层:通过在拉伸域上的随机傅立叶编码增强表达性。

IF 3.2 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2025-09-01 DOI:10.1063/5.0283442
Gerard McCaul, Girish Tripathy, Giulia Marcucci, Juan Sebastian Totero Gongora
{"title":"展开光子储层:通过在拉伸域上的随机傅立叶编码增强表达性。","authors":"Gerard McCaul, Girish Tripathy, Giulia Marcucci, Juan Sebastian Totero Gongora","doi":"10.1063/5.0283442","DOIUrl":null,"url":null,"abstract":"<p><p>Photonic Reservoir Computing (RC) systems leverage the complex propagation and nonlinear interaction of optical waves to perform information processing tasks. These systems employ a combination of optical data encoding (in the field amplitude and/or phase), random scattering, and nonlinear detection to generate nonlinear features that can be processed via a linear readout layer. In this work, we propose a novel scattering-assisted photonic reservoir encoding scheme where the input phase is deliberately wrapped multiple times beyond the natural period of the optical waves [0,2π). We demonstrate that, rather than hindering nonlinear separability through loss of bijectivity, wrapping significantly improves the reservoir's prediction performance across regression and classification tasks that are unattainable within the canonical 2π period. We demonstrate that this counterintuitive effect stems from the nonlinear interference between sets of random synthetic frequencies introduced by the encoding, which generates a rich feature space spanning both the feature and sample dimensions of the data. Our results highlight the potential of engineered phase wrapping as a computational resource in RC systems based on phase encoding, paving the way for novel approaches to designing and optimizing physical computing platforms based on topological and geometric stretching.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 9","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unwrapping photonic reservoirs: Enhanced expressivity via random Fourier encoding over stretched domains.\",\"authors\":\"Gerard McCaul, Girish Tripathy, Giulia Marcucci, Juan Sebastian Totero Gongora\",\"doi\":\"10.1063/5.0283442\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Photonic Reservoir Computing (RC) systems leverage the complex propagation and nonlinear interaction of optical waves to perform information processing tasks. These systems employ a combination of optical data encoding (in the field amplitude and/or phase), random scattering, and nonlinear detection to generate nonlinear features that can be processed via a linear readout layer. In this work, we propose a novel scattering-assisted photonic reservoir encoding scheme where the input phase is deliberately wrapped multiple times beyond the natural period of the optical waves [0,2π). We demonstrate that, rather than hindering nonlinear separability through loss of bijectivity, wrapping significantly improves the reservoir's prediction performance across regression and classification tasks that are unattainable within the canonical 2π period. We demonstrate that this counterintuitive effect stems from the nonlinear interference between sets of random synthetic frequencies introduced by the encoding, which generates a rich feature space spanning both the feature and sample dimensions of the data. Our results highlight the potential of engineered phase wrapping as a computational resource in RC systems based on phase encoding, paving the way for novel approaches to designing and optimizing physical computing platforms based on topological and geometric stretching.</p>\",\"PeriodicalId\":9974,\"journal\":{\"name\":\"Chaos\",\"volume\":\"35 9\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0283442\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0283442","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

光子库计算(RC)系统利用光波的复杂传播和非线性相互作用来完成信息处理任务。这些系统采用光学数据编码(在场振幅和/或相位中)、随机散射和非线性检测的组合,以产生可以通过线性读出层处理的非线性特征。在这项工作中,我们提出了一种新的散射辅助光子储层编码方案,其中输入相位被故意包裹多次超过光波的自然周期[0,2π]。研究表明,包裹层并没有因为双客观性的损失而阻碍非线性可分性,而是显著提高了储层在回归和分类任务中的预测性能,而这在典型的2π周期内是无法实现的。我们证明了这种反直觉效应源于编码引入的随机合成频率集之间的非线性干扰,这产生了一个丰富的特征空间,涵盖了数据的特征和样本维度。我们的研究结果强调了工程相位包装作为基于相位编码的RC系统计算资源的潜力,为基于拓扑和几何拉伸设计和优化物理计算平台的新方法铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unwrapping photonic reservoirs: Enhanced expressivity via random Fourier encoding over stretched domains.

Photonic Reservoir Computing (RC) systems leverage the complex propagation and nonlinear interaction of optical waves to perform information processing tasks. These systems employ a combination of optical data encoding (in the field amplitude and/or phase), random scattering, and nonlinear detection to generate nonlinear features that can be processed via a linear readout layer. In this work, we propose a novel scattering-assisted photonic reservoir encoding scheme where the input phase is deliberately wrapped multiple times beyond the natural period of the optical waves [0,2π). We demonstrate that, rather than hindering nonlinear separability through loss of bijectivity, wrapping significantly improves the reservoir's prediction performance across regression and classification tasks that are unattainable within the canonical 2π period. We demonstrate that this counterintuitive effect stems from the nonlinear interference between sets of random synthetic frequencies introduced by the encoding, which generates a rich feature space spanning both the feature and sample dimensions of the data. Our results highlight the potential of engineered phase wrapping as a computational resource in RC systems based on phase encoding, paving the way for novel approaches to designing and optimizing physical computing platforms based on topological and geometric stretching.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信