Mahmoud A. Al-Sha’er, Afnan A. Alzaghari, Mutasem O. Taha
{"title":"通过基于结构的药物载体,虚拟筛选和生物测定筛选鉴定和评估有效的AAK1抑制剂","authors":"Mahmoud A. Al-Sha’er, Afnan A. Alzaghari, Mutasem O. Taha","doi":"10.1007/s00044-025-03455-9","DOIUrl":null,"url":null,"abstract":"<div><p>This study employed structure-based drug design to discover novel inhibitors of Adaptor Associated Kinase 1 (AAK1) as potential anticancer agents. A total of 300 pharmacophore models were generated from AAK1 co-crystallized protein structures, from which the optimal model (<b>Hypo1</b>) was selected based on receiver operating characteristic (ROC) analysis (AUC = 82.3%) and further refined using shape-based alignment. Virtual screening of the National Cancer Institute (NCI) database yielded 7399 initial hits, which were narrowed down to 3481 compounds through Lipinski’s rule of five and SMARTS pattern filtering. Subsequent molecular docking against the AAK1 active site identified 438 candidates, of which the top 40 were selected for biological evaluation. Among these, Hit 5 (NCI 157865) exhibited the most potent AAK1 inhibition (IC<sub>50</sub> = 1.03 µM), with other active hits showing IC<sub>50</sub> values ranging from 1.87 to 7.49 µM. MTT assays confirmed the anticancer activity of Compound 5, with IC<sub>50</sub> values of 11.46 µM against MCF7 and 69.37 µM against A549 cell lines. The compound’s potency is attributed to key hydrophobic interactions and hydrogen bond acceptor features. These results highlight Compound 5 as a promising lead candidate for further development as an anticancer agent.</p><div><figure><div><div><picture><source><img></source></picture></div><div><p><b>Hypo1</b> fitted against hit <b>5</b> as compared to its 2D interactions within AAK1 binding site with IC<sub>50</sub> = 1.05 μM</p></div></div></figure></div></div>","PeriodicalId":699,"journal":{"name":"Medicinal Chemistry Research","volume":"34 9","pages":"1945 - 1957"},"PeriodicalIF":3.1000,"publicationDate":"2025-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification and evaluation of potent AAK1 inhibitors through structure-based pharmacophores, virtual screening and bioassay screening\",\"authors\":\"Mahmoud A. Al-Sha’er, Afnan A. Alzaghari, Mutasem O. Taha\",\"doi\":\"10.1007/s00044-025-03455-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study employed structure-based drug design to discover novel inhibitors of Adaptor Associated Kinase 1 (AAK1) as potential anticancer agents. A total of 300 pharmacophore models were generated from AAK1 co-crystallized protein structures, from which the optimal model (<b>Hypo1</b>) was selected based on receiver operating characteristic (ROC) analysis (AUC = 82.3%) and further refined using shape-based alignment. Virtual screening of the National Cancer Institute (NCI) database yielded 7399 initial hits, which were narrowed down to 3481 compounds through Lipinski’s rule of five and SMARTS pattern filtering. Subsequent molecular docking against the AAK1 active site identified 438 candidates, of which the top 40 were selected for biological evaluation. Among these, Hit 5 (NCI 157865) exhibited the most potent AAK1 inhibition (IC<sub>50</sub> = 1.03 µM), with other active hits showing IC<sub>50</sub> values ranging from 1.87 to 7.49 µM. MTT assays confirmed the anticancer activity of Compound 5, with IC<sub>50</sub> values of 11.46 µM against MCF7 and 69.37 µM against A549 cell lines. The compound’s potency is attributed to key hydrophobic interactions and hydrogen bond acceptor features. These results highlight Compound 5 as a promising lead candidate for further development as an anticancer agent.</p><div><figure><div><div><picture><source><img></source></picture></div><div><p><b>Hypo1</b> fitted against hit <b>5</b> as compared to its 2D interactions within AAK1 binding site with IC<sub>50</sub> = 1.05 μM</p></div></div></figure></div></div>\",\"PeriodicalId\":699,\"journal\":{\"name\":\"Medicinal Chemistry Research\",\"volume\":\"34 9\",\"pages\":\"1945 - 1957\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medicinal Chemistry Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00044-025-03455-9\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medicinal Chemistry Research","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s00044-025-03455-9","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Identification and evaluation of potent AAK1 inhibitors through structure-based pharmacophores, virtual screening and bioassay screening
This study employed structure-based drug design to discover novel inhibitors of Adaptor Associated Kinase 1 (AAK1) as potential anticancer agents. A total of 300 pharmacophore models were generated from AAK1 co-crystallized protein structures, from which the optimal model (Hypo1) was selected based on receiver operating characteristic (ROC) analysis (AUC = 82.3%) and further refined using shape-based alignment. Virtual screening of the National Cancer Institute (NCI) database yielded 7399 initial hits, which were narrowed down to 3481 compounds through Lipinski’s rule of five and SMARTS pattern filtering. Subsequent molecular docking against the AAK1 active site identified 438 candidates, of which the top 40 were selected for biological evaluation. Among these, Hit 5 (NCI 157865) exhibited the most potent AAK1 inhibition (IC50 = 1.03 µM), with other active hits showing IC50 values ranging from 1.87 to 7.49 µM. MTT assays confirmed the anticancer activity of Compound 5, with IC50 values of 11.46 µM against MCF7 and 69.37 µM against A549 cell lines. The compound’s potency is attributed to key hydrophobic interactions and hydrogen bond acceptor features. These results highlight Compound 5 as a promising lead candidate for further development as an anticancer agent.
Hypo1 fitted against hit 5 as compared to its 2D interactions within AAK1 binding site with IC50 = 1.05 μM
期刊介绍:
Medicinal Chemistry Research (MCRE) publishes papers on a wide range of topics, favoring research with significant, new, and up-to-date information. Although the journal has a demanding peer review process, MCRE still boasts rapid publication, due in part, to the length of the submissions. The journal publishes significant research on various topics, many of which emphasize the structure-activity relationships of molecular biology.