伴随轨道上的振子微积分和指数定理

IF 1.4 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Dmitri Bykov, Viacheslav Krivorol, Andrew Kuzovchikov
{"title":"伴随轨道上的振子微积分和指数定理","authors":"Dmitri Bykov,&nbsp;Viacheslav Krivorol,&nbsp;Andrew Kuzovchikov","doi":"10.1007/s11005-025-01974-5","DOIUrl":null,"url":null,"abstract":"<div><p>We consider quantum mechanical systems of spin chain type, with finite-dimensional Hilbert spaces and <span>\\(\\mathcal {N}=2\\)</span> or <span>\\(\\mathcal {N}=4\\)</span> supersymmetry, described in <span>\\(\\mathcal {N}=2\\)</span> superspace in terms of nonlinear chiral multiplets. We prove that they are natural truncations of 1D sigma models, whose target spaces are <span>\\(\\textsf {SU}(n)\\)</span> (co)adjoint orbits. As a first application, we compute the Witten indices of these finite-dimensional models showing that they reproduce the Dolbeault and de Rham indices of the target space. The problem of finding the exact spectra of generalized Laplace operators on such orbits is shown to be equivalent to the diagonalization of spin chain Hamiltonians.\n</p></div>","PeriodicalId":685,"journal":{"name":"Letters in Mathematical Physics","volume":"115 5","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oscillator calculus on coadjoint orbits and index theorems\",\"authors\":\"Dmitri Bykov,&nbsp;Viacheslav Krivorol,&nbsp;Andrew Kuzovchikov\",\"doi\":\"10.1007/s11005-025-01974-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider quantum mechanical systems of spin chain type, with finite-dimensional Hilbert spaces and <span>\\\\(\\\\mathcal {N}=2\\\\)</span> or <span>\\\\(\\\\mathcal {N}=4\\\\)</span> supersymmetry, described in <span>\\\\(\\\\mathcal {N}=2\\\\)</span> superspace in terms of nonlinear chiral multiplets. We prove that they are natural truncations of 1D sigma models, whose target spaces are <span>\\\\(\\\\textsf {SU}(n)\\\\)</span> (co)adjoint orbits. As a first application, we compute the Witten indices of these finite-dimensional models showing that they reproduce the Dolbeault and de Rham indices of the target space. The problem of finding the exact spectra of generalized Laplace operators on such orbits is shown to be equivalent to the diagonalization of spin chain Hamiltonians.\\n</p></div>\",\"PeriodicalId\":685,\"journal\":{\"name\":\"Letters in Mathematical Physics\",\"volume\":\"115 5\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Letters in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11005-025-01974-5\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11005-025-01974-5","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑具有有限维希尔伯特空间和\(\mathcal {N}=2\)或\(\mathcal {N}=4\)超对称的自旋链型量子力学系统,在\(\mathcal {N}=2\)超空间中以非线性手性多重态描述。证明了它们是一维sigma模型的自然截断,其目标空间为\(\textsf {SU}(n)\) (co)伴随轨道。作为第一个应用,我们计算了这些有限维模型的Witten指数,表明它们再现了目标空间的Dolbeault和de Rham指数。在这样的轨道上求广义拉普拉斯算子的精确谱的问题被证明是等价于自旋链哈密顿量的对角化问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Oscillator calculus on coadjoint orbits and index theorems

We consider quantum mechanical systems of spin chain type, with finite-dimensional Hilbert spaces and \(\mathcal {N}=2\) or \(\mathcal {N}=4\) supersymmetry, described in \(\mathcal {N}=2\) superspace in terms of nonlinear chiral multiplets. We prove that they are natural truncations of 1D sigma models, whose target spaces are \(\textsf {SU}(n)\) (co)adjoint orbits. As a first application, we compute the Witten indices of these finite-dimensional models showing that they reproduce the Dolbeault and de Rham indices of the target space. The problem of finding the exact spectra of generalized Laplace operators on such orbits is shown to be equivalent to the diagonalization of spin chain Hamiltonians.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Letters in Mathematical Physics
Letters in Mathematical Physics 物理-物理:数学物理
CiteScore
2.40
自引率
8.30%
发文量
111
审稿时长
3 months
期刊介绍: The aim of Letters in Mathematical Physics is to attract the community''s attention on important and original developments in the area of mathematical physics and contemporary theoretical physics. The journal publishes letters and longer research articles, occasionally also articles containing topical reviews. We are committed to both fast publication and careful refereeing. In addition, the journal offers important contributions to modern mathematics in fields which have a potential physical application, and important developments in theoretical physics which have potential mathematical impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信