含裂纹热弹性介质动力学方程的广义解

IF 0.9 4区 工程技术 Q4 MECHANICS
L. A. Alexeyeva, B. Alipova
{"title":"含裂纹热弹性介质动力学方程的广义解","authors":"L. A. Alexeyeva,&nbsp;B. Alipova","doi":"10.1134/S0025654424605627","DOIUrl":null,"url":null,"abstract":"<p>The dynamics of an isotropic thermoelastic medium during the formation of cracks with an arbitrary surface geometry and non-opening edges is considered. The shock thermoelastic waves arise in the medium during such a process. The energy conservation law for a thermoelastic medium is considered considering shock waves. For shock thermoelastic waves, using the method of generalized functions, conditions are obtained for jumps in stresses, velocities, heat fluxes and energy density on their fronts. The crack model determines the relationship between jumps in stresses and velocities of relative displacement of the crack edges. The problem is posed and solved in the space of generalized vector functions. The solution is presented as a tensor-functional convolution of the Green’s tensor of the equations of coupled thermoelasticity with a singular mass forces containing simple and double layers whose densities are determined by the jump in velocities, stresses, temperatures and heat fluxes on the crack edges. The latter determine the crack model and are assumed to be known.</p>","PeriodicalId":697,"journal":{"name":"Mechanics of Solids","volume":"60 3","pages":"1523 - 1532"},"PeriodicalIF":0.9000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized Solution of Equations of Dynamics of Thermoelastic Medium with Crack\",\"authors\":\"L. A. Alexeyeva,&nbsp;B. Alipova\",\"doi\":\"10.1134/S0025654424605627\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The dynamics of an isotropic thermoelastic medium during the formation of cracks with an arbitrary surface geometry and non-opening edges is considered. The shock thermoelastic waves arise in the medium during such a process. The energy conservation law for a thermoelastic medium is considered considering shock waves. For shock thermoelastic waves, using the method of generalized functions, conditions are obtained for jumps in stresses, velocities, heat fluxes and energy density on their fronts. The crack model determines the relationship between jumps in stresses and velocities of relative displacement of the crack edges. The problem is posed and solved in the space of generalized vector functions. The solution is presented as a tensor-functional convolution of the Green’s tensor of the equations of coupled thermoelasticity with a singular mass forces containing simple and double layers whose densities are determined by the jump in velocities, stresses, temperatures and heat fluxes on the crack edges. The latter determine the crack model and are assumed to be known.</p>\",\"PeriodicalId\":697,\"journal\":{\"name\":\"Mechanics of Solids\",\"volume\":\"60 3\",\"pages\":\"1523 - 1532\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanics of Solids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0025654424605627\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Solids","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0025654424605627","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

考虑了各向同性热弹性介质在具有任意表面几何形状和非张开边缘的裂纹形成过程中的动力学。在此过程中,介质中产生了激波热弹性波。考虑激波时热弹性介质的能量守恒定律。对于激波热弹性波,利用广义函数法,得到了激波锋面应力、速度、热流密度和能量密度跳跃的条件。裂纹模型确定了应力跳跃与裂纹边缘相对位移速度之间的关系。该问题是在广义向量函数空间中提出并求解的。求解的形式是具有奇异质量力的耦合热弹性方程的格林张量的张量泛函卷积,该方程包含单层和双层,其密度由裂纹边缘上的速度、应力、温度和热流的跳跃决定。后者决定了裂纹模型,并被假定为已知。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized Solution of Equations of Dynamics of Thermoelastic Medium with Crack

The dynamics of an isotropic thermoelastic medium during the formation of cracks with an arbitrary surface geometry and non-opening edges is considered. The shock thermoelastic waves arise in the medium during such a process. The energy conservation law for a thermoelastic medium is considered considering shock waves. For shock thermoelastic waves, using the method of generalized functions, conditions are obtained for jumps in stresses, velocities, heat fluxes and energy density on their fronts. The crack model determines the relationship between jumps in stresses and velocities of relative displacement of the crack edges. The problem is posed and solved in the space of generalized vector functions. The solution is presented as a tensor-functional convolution of the Green’s tensor of the equations of coupled thermoelasticity with a singular mass forces containing simple and double layers whose densities are determined by the jump in velocities, stresses, temperatures and heat fluxes on the crack edges. The latter determine the crack model and are assumed to be known.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mechanics of Solids
Mechanics of Solids 医学-力学
CiteScore
1.20
自引率
42.90%
发文量
112
审稿时长
6-12 weeks
期刊介绍: Mechanics of Solids publishes articles in the general areas of dynamics of particles and rigid bodies and the mechanics of deformable solids. The journal has a goal of being a comprehensive record of up-to-the-minute research results. The journal coverage is vibration of discrete and continuous systems; stability and optimization of mechanical systems; automatic control theory; dynamics of multiple body systems; elasticity, viscoelasticity and plasticity; mechanics of composite materials; theory of structures and structural stability; wave propagation and impact of solids; fracture mechanics; micromechanics of solids; mechanics of granular and geological materials; structure-fluid interaction; mechanical behavior of materials; gyroscopes and navigation systems; and nanomechanics. Most of the articles in the journal are theoretical and analytical. They present a blend of basic mechanics theory with analysis of contemporary technological problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信