Linggai Cao, Ping Dong, Jie Liu, Jie Zhang, He Xie, Shizhou Yu, Jianfeng Zhang
{"title":"基于皂苷的疫苗佐剂的研究进展","authors":"Linggai Cao, Ping Dong, Jie Liu, Jie Zhang, He Xie, Shizhou Yu, Jianfeng Zhang","doi":"10.1007/s00044-025-03453-x","DOIUrl":null,"url":null,"abstract":"<div><p>Saponin-based adjuvants have emerged as promising candidates for enhancing vaccine efficacy by modulating immune responses. Derived primarily from plant and marine sources, saponins possess unique amphiphilic structures that contribute to their potent immunostimulatory properties. This review explores the advancements in saponin-based vaccine adjuvants, focusing on their immunomodulatory mechanisms, structural diversity, and applications. QS-21, a triterpenoid saponin from <i>Quillaja saponaria</i>, is the most extensively studied and has been incorporated into licensed vaccines such as Shingrix, Mosquirix, and Arexvy. However, the limitations of natural saponin-derived adjuvants, including hemolytic toxicity, hydrolytic instability, and low yield, have driven research toward semi-synthetic and synthetic analogs. Advances in synthetic biology and biosynthetic pathway elucidation have enabled the development of next-generation saponin-based adjuvants with enhanced potency and reduced toxicity. This review provides a comprehensive overview of the current state of saponin-based adjuvant research, highlighting their potential to revolutionize vaccine formulations and contribute to global public health initiatives.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":699,"journal":{"name":"Medicinal Chemistry Research","volume":"34 9","pages":"1817 - 1832"},"PeriodicalIF":3.1000,"publicationDate":"2025-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00044-025-03453-x.pdf","citationCount":"0","resultStr":"{\"title\":\"Advancements in saponin-based vaccine adjuvants\",\"authors\":\"Linggai Cao, Ping Dong, Jie Liu, Jie Zhang, He Xie, Shizhou Yu, Jianfeng Zhang\",\"doi\":\"10.1007/s00044-025-03453-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Saponin-based adjuvants have emerged as promising candidates for enhancing vaccine efficacy by modulating immune responses. Derived primarily from plant and marine sources, saponins possess unique amphiphilic structures that contribute to their potent immunostimulatory properties. This review explores the advancements in saponin-based vaccine adjuvants, focusing on their immunomodulatory mechanisms, structural diversity, and applications. QS-21, a triterpenoid saponin from <i>Quillaja saponaria</i>, is the most extensively studied and has been incorporated into licensed vaccines such as Shingrix, Mosquirix, and Arexvy. However, the limitations of natural saponin-derived adjuvants, including hemolytic toxicity, hydrolytic instability, and low yield, have driven research toward semi-synthetic and synthetic analogs. Advances in synthetic biology and biosynthetic pathway elucidation have enabled the development of next-generation saponin-based adjuvants with enhanced potency and reduced toxicity. This review provides a comprehensive overview of the current state of saponin-based adjuvant research, highlighting their potential to revolutionize vaccine formulations and contribute to global public health initiatives.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":699,\"journal\":{\"name\":\"Medicinal Chemistry Research\",\"volume\":\"34 9\",\"pages\":\"1817 - 1832\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00044-025-03453-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medicinal Chemistry Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00044-025-03453-x\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medicinal Chemistry Research","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s00044-025-03453-x","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Saponin-based adjuvants have emerged as promising candidates for enhancing vaccine efficacy by modulating immune responses. Derived primarily from plant and marine sources, saponins possess unique amphiphilic structures that contribute to their potent immunostimulatory properties. This review explores the advancements in saponin-based vaccine adjuvants, focusing on their immunomodulatory mechanisms, structural diversity, and applications. QS-21, a triterpenoid saponin from Quillaja saponaria, is the most extensively studied and has been incorporated into licensed vaccines such as Shingrix, Mosquirix, and Arexvy. However, the limitations of natural saponin-derived adjuvants, including hemolytic toxicity, hydrolytic instability, and low yield, have driven research toward semi-synthetic and synthetic analogs. Advances in synthetic biology and biosynthetic pathway elucidation have enabled the development of next-generation saponin-based adjuvants with enhanced potency and reduced toxicity. This review provides a comprehensive overview of the current state of saponin-based adjuvant research, highlighting their potential to revolutionize vaccine formulations and contribute to global public health initiatives.
期刊介绍:
Medicinal Chemistry Research (MCRE) publishes papers on a wide range of topics, favoring research with significant, new, and up-to-date information. Although the journal has a demanding peer review process, MCRE still boasts rapid publication, due in part, to the length of the submissions. The journal publishes significant research on various topics, many of which emphasize the structure-activity relationships of molecular biology.