{"title":"关于勒奇公式和四边形函数的零点","authors":"Takashi Nakamura","doi":"10.1007/s12188-025-00286-8","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(0 < a \\le 1/2\\)</span> and define the quadrilateral zeta function by <span>\\(2Q(s,a):= \\zeta (s,a) + \\zeta (s,1-a) + \\mathrm{{Li}}_s (e^{2\\pi ia}) + \\mathrm{{Li}}_s(e^{2\\pi i(1-a)})\\)</span>, where <span>\\(\\zeta (s,a)\\)</span> is the Hurwitz zeta function and <span>\\(\\mathrm{{Li}}_s (e^{2\\pi ia})\\)</span> is the periodic zeta function. In the present paper, we show that there exists a unique real number <span>\\(a_0 \\in (0,1/2)\\)</span> such that all real zeros of <i>Q</i>(<i>s</i>, <i>a</i>) are simple and are located only at the negative even integers just like <span>\\(\\zeta (s)\\)</span> if and only if <span>\\(a_0 < a \\le 1/2\\)</span>. Moreover, we prove that <i>Q</i>(<i>s</i>, <i>a</i>) has infinitely many complex zeros in the region of absolute convergence and the critical strip when <span>\\(a \\in {\\mathbb {Q}} \\cap (0,1/2) \\setminus \\{1/6, 1/4, 1/3\\}\\)</span>. The Lerch formula, Hadamard product formula, Riemann-von Mangoldt formula for <i>Q</i>(<i>s</i>, <i>a</i>) are also shown.</p></div>","PeriodicalId":50932,"journal":{"name":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","volume":"95 1","pages":"1 - 18"},"PeriodicalIF":0.3000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12188-025-00286-8.pdf","citationCount":"0","resultStr":"{\"title\":\"On Lerch’s formula and zeros of the quadrilateral zeta function\",\"authors\":\"Takashi Nakamura\",\"doi\":\"10.1007/s12188-025-00286-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span>\\\\(0 < a \\\\le 1/2\\\\)</span> and define the quadrilateral zeta function by <span>\\\\(2Q(s,a):= \\\\zeta (s,a) + \\\\zeta (s,1-a) + \\\\mathrm{{Li}}_s (e^{2\\\\pi ia}) + \\\\mathrm{{Li}}_s(e^{2\\\\pi i(1-a)})\\\\)</span>, where <span>\\\\(\\\\zeta (s,a)\\\\)</span> is the Hurwitz zeta function and <span>\\\\(\\\\mathrm{{Li}}_s (e^{2\\\\pi ia})\\\\)</span> is the periodic zeta function. In the present paper, we show that there exists a unique real number <span>\\\\(a_0 \\\\in (0,1/2)\\\\)</span> such that all real zeros of <i>Q</i>(<i>s</i>, <i>a</i>) are simple and are located only at the negative even integers just like <span>\\\\(\\\\zeta (s)\\\\)</span> if and only if <span>\\\\(a_0 < a \\\\le 1/2\\\\)</span>. Moreover, we prove that <i>Q</i>(<i>s</i>, <i>a</i>) has infinitely many complex zeros in the region of absolute convergence and the critical strip when <span>\\\\(a \\\\in {\\\\mathbb {Q}} \\\\cap (0,1/2) \\\\setminus \\\\{1/6, 1/4, 1/3\\\\}\\\\)</span>. The Lerch formula, Hadamard product formula, Riemann-von Mangoldt formula for <i>Q</i>(<i>s</i>, <i>a</i>) are also shown.</p></div>\",\"PeriodicalId\":50932,\"journal\":{\"name\":\"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg\",\"volume\":\"95 1\",\"pages\":\"1 - 18\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2025-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s12188-025-00286-8.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12188-025-00286-8\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s12188-025-00286-8","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
On Lerch’s formula and zeros of the quadrilateral zeta function
Let \(0 < a \le 1/2\) and define the quadrilateral zeta function by \(2Q(s,a):= \zeta (s,a) + \zeta (s,1-a) + \mathrm{{Li}}_s (e^{2\pi ia}) + \mathrm{{Li}}_s(e^{2\pi i(1-a)})\), where \(\zeta (s,a)\) is the Hurwitz zeta function and \(\mathrm{{Li}}_s (e^{2\pi ia})\) is the periodic zeta function. In the present paper, we show that there exists a unique real number \(a_0 \in (0,1/2)\) such that all real zeros of Q(s, a) are simple and are located only at the negative even integers just like \(\zeta (s)\) if and only if \(a_0 < a \le 1/2\). Moreover, we prove that Q(s, a) has infinitely many complex zeros in the region of absolute convergence and the critical strip when \(a \in {\mathbb {Q}} \cap (0,1/2) \setminus \{1/6, 1/4, 1/3\}\). The Lerch formula, Hadamard product formula, Riemann-von Mangoldt formula for Q(s, a) are also shown.
期刊介绍:
The first issue of the "Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg" was published in the year 1921. This international mathematical journal has since then provided a forum for significant research contributions. The journal covers all central areas of pure mathematics, such as algebra, complex analysis and geometry, differential geometry and global analysis, graph theory and discrete mathematics, Lie theory, number theory, and algebraic topology.