船用发动机挥发性和中间挥发性有机化合物的排放形态:发动机负荷、燃料类型和光化学老化的影响

IF 3.5 Q3 ENVIRONMENTAL SCIENCES
Deeksha Shukla, Hendryk Czech, Tuukka Kokkola, Martin Bauer, Andreas Paul, Uwe Etzien, Mika Ihalainen, Zheng Fang, Anni Hartikainen, Nadine Gawlitta, Thorsten Hohaus, Yinon Rudich, Thorsten Streibel, Bert Buchholz, Olli Sippula, Johan Øvrevik, Jürgen Schnelle-Kreis and Ralf Zimmermann
{"title":"船用发动机挥发性和中间挥发性有机化合物的排放形态:发动机负荷、燃料类型和光化学老化的影响","authors":"Deeksha Shukla, Hendryk Czech, Tuukka Kokkola, Martin Bauer, Andreas Paul, Uwe Etzien, Mika Ihalainen, Zheng Fang, Anni Hartikainen, Nadine Gawlitta, Thorsten Hohaus, Yinon Rudich, Thorsten Streibel, Bert Buchholz, Olli Sippula, Johan Øvrevik, Jürgen Schnelle-Kreis and Ralf Zimmermann","doi":"10.1039/D5EA00040H","DOIUrl":null,"url":null,"abstract":"<p >The enforcement of global fuel sulfur content (FSC) regulations has significantly reduced SO<small><sub>2</sub></small> and particulate matter (PM) emissions from ships. However, the impact of the International Maritime Organization's (IMO) sulfur reduction policy on gaseous hydrocarbon emissions, including volatile and intermediate volatility organic compounds (VOCs/IVOCs), remains underexplored. In this study, a 4-stroke single cylinder marine engine was operated using marine gas oil (MGO, FSC = 0.01%) and low-sulfur heavy fuel oil (LS-HFO, FSC = 0.5%) across various engine loads, ranging from 20 kW to a maximum of 80 kW. Emissions were photochemically aged in the oxidation flow reactor “PEAR,” simulating an equivalent photochemical aging period from 1.4 ± 0.2 to 4.6 ± 0.8 days related to the OH· exposure. Emission factors (EFs) of all targeted VOCs/IVOCs varied significantly, ranging from 20.0 ± 2.5 to 180 ± 20 mg kWh<small><sup>−1</sup></small> and from 26.0 ± 11.0 to 280 ± 100 mg kWh<small><sup>−1</sup></small> from a high (80 kW) to low engine load (20 kW) for MGO and LS-HFO, respectively. Monoaromatics dominated total fresh emissions for MGO (64%) and LS-HFO (76%), followed by alkanes. Naphthalene and alkylated naphthalene content declined more than monoaromatic and alkane content, thus changing the VOC/IVOC emission pattern after photochemical aging. Estimated SOA from targeted VOC/IVOC precursors accounted for 41% of the measured secondary organic aerosol (SOA) for MGO, while a lower contribution (34%) was observed for LS-HFO at 20 kW engine load, highlighting the role of unmeasured VOCs/IVOCs in SOA formation. Expanding the research on the effects of atmospheric aging on marine emissions will offer valuable insights into this underexplored area.</p>","PeriodicalId":72942,"journal":{"name":"Environmental science: atmospheres","volume":" 9","pages":" 973-986"},"PeriodicalIF":3.5000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ea/d5ea00040h?page=search","citationCount":"0","resultStr":"{\"title\":\"Emission speciation of volatile and intermediate volatility organic compounds from a marine engine: effect of engine load, fuel type and photochemical aging\",\"authors\":\"Deeksha Shukla, Hendryk Czech, Tuukka Kokkola, Martin Bauer, Andreas Paul, Uwe Etzien, Mika Ihalainen, Zheng Fang, Anni Hartikainen, Nadine Gawlitta, Thorsten Hohaus, Yinon Rudich, Thorsten Streibel, Bert Buchholz, Olli Sippula, Johan Øvrevik, Jürgen Schnelle-Kreis and Ralf Zimmermann\",\"doi\":\"10.1039/D5EA00040H\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The enforcement of global fuel sulfur content (FSC) regulations has significantly reduced SO<small><sub>2</sub></small> and particulate matter (PM) emissions from ships. However, the impact of the International Maritime Organization's (IMO) sulfur reduction policy on gaseous hydrocarbon emissions, including volatile and intermediate volatility organic compounds (VOCs/IVOCs), remains underexplored. In this study, a 4-stroke single cylinder marine engine was operated using marine gas oil (MGO, FSC = 0.01%) and low-sulfur heavy fuel oil (LS-HFO, FSC = 0.5%) across various engine loads, ranging from 20 kW to a maximum of 80 kW. Emissions were photochemically aged in the oxidation flow reactor “PEAR,” simulating an equivalent photochemical aging period from 1.4 ± 0.2 to 4.6 ± 0.8 days related to the OH· exposure. Emission factors (EFs) of all targeted VOCs/IVOCs varied significantly, ranging from 20.0 ± 2.5 to 180 ± 20 mg kWh<small><sup>−1</sup></small> and from 26.0 ± 11.0 to 280 ± 100 mg kWh<small><sup>−1</sup></small> from a high (80 kW) to low engine load (20 kW) for MGO and LS-HFO, respectively. Monoaromatics dominated total fresh emissions for MGO (64%) and LS-HFO (76%), followed by alkanes. Naphthalene and alkylated naphthalene content declined more than monoaromatic and alkane content, thus changing the VOC/IVOC emission pattern after photochemical aging. Estimated SOA from targeted VOC/IVOC precursors accounted for 41% of the measured secondary organic aerosol (SOA) for MGO, while a lower contribution (34%) was observed for LS-HFO at 20 kW engine load, highlighting the role of unmeasured VOCs/IVOCs in SOA formation. Expanding the research on the effects of atmospheric aging on marine emissions will offer valuable insights into this underexplored area.</p>\",\"PeriodicalId\":72942,\"journal\":{\"name\":\"Environmental science: atmospheres\",\"volume\":\" 9\",\"pages\":\" 973-986\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/ea/d5ea00040h?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental science: atmospheres\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ea/d5ea00040h\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental science: atmospheres","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ea/d5ea00040h","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

全球燃料硫含量(FSC)法规的实施大大减少了船舶的二氧化硫和颗粒物(PM)排放。然而,国际海事组织(IMO)的减硫政策对气态碳氢化合物排放(包括挥发性和中间挥发性有机化合物(VOCs/IVOCs))的影响仍未得到充分探讨。在这项研究中,一台4冲程单缸船用发动机使用船用柴油(MGO, FSC = 0.01%)和低硫重质燃料油(LS-HFO, FSC = 0.5%)在不同的发动机负载下运行,负载范围从20千瓦到最大80千瓦。排放物在氧化流反应器“PEAR”中进行光化学老化,模拟与OH·暴露相关的等效光化学老化期为1.4±0.2至4.6±0.8天。MGO和LS-HFO在高负荷(80 kW)和低负荷(20 kW)工况下,目标VOCs/IVOCs排放因子(EFs)变化范围分别为20.0±2.5 ~ 180±20 mg kWh−1和26.0±11.0 ~ 280±100 mg kWh−1。单芳烃在MGO和LS-HFO的总新排放中占主导地位(64%),其次是烷烃(76%)。萘和烷基化萘含量下降幅度大于单芳烃和烷烃含量,从而改变了光化学老化后VOC/IVOC的排放格局。来自目标VOC/IVOC前体的估计SOA占MGO测量的二次有机气溶胶(SOA)的41%,而在20 kW发动机负载下的LS-HFO中观察到的贡献较低(34%),突出了未测量的VOCs/IVOCs在SOA形成中的作用。扩大对大气老化对海洋排放影响的研究将为这一尚未开发的领域提供有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Emission speciation of volatile and intermediate volatility organic compounds from a marine engine: effect of engine load, fuel type and photochemical aging

Emission speciation of volatile and intermediate volatility organic compounds from a marine engine: effect of engine load, fuel type and photochemical aging

The enforcement of global fuel sulfur content (FSC) regulations has significantly reduced SO2 and particulate matter (PM) emissions from ships. However, the impact of the International Maritime Organization's (IMO) sulfur reduction policy on gaseous hydrocarbon emissions, including volatile and intermediate volatility organic compounds (VOCs/IVOCs), remains underexplored. In this study, a 4-stroke single cylinder marine engine was operated using marine gas oil (MGO, FSC = 0.01%) and low-sulfur heavy fuel oil (LS-HFO, FSC = 0.5%) across various engine loads, ranging from 20 kW to a maximum of 80 kW. Emissions were photochemically aged in the oxidation flow reactor “PEAR,” simulating an equivalent photochemical aging period from 1.4 ± 0.2 to 4.6 ± 0.8 days related to the OH· exposure. Emission factors (EFs) of all targeted VOCs/IVOCs varied significantly, ranging from 20.0 ± 2.5 to 180 ± 20 mg kWh−1 and from 26.0 ± 11.0 to 280 ± 100 mg kWh−1 from a high (80 kW) to low engine load (20 kW) for MGO and LS-HFO, respectively. Monoaromatics dominated total fresh emissions for MGO (64%) and LS-HFO (76%), followed by alkanes. Naphthalene and alkylated naphthalene content declined more than monoaromatic and alkane content, thus changing the VOC/IVOC emission pattern after photochemical aging. Estimated SOA from targeted VOC/IVOC precursors accounted for 41% of the measured secondary organic aerosol (SOA) for MGO, while a lower contribution (34%) was observed for LS-HFO at 20 kW engine load, highlighting the role of unmeasured VOCs/IVOCs in SOA formation. Expanding the research on the effects of atmospheric aging on marine emissions will offer valuable insights into this underexplored area.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信