nDTomo:用于x射线化学成像和断层扫描的模块化Python工具包

IF 6.2 Q1 CHEMISTRY, MULTIDISCIPLINARY
A. Vamvakeros, E. Papoutsellis, H. Dong, R. Docherty, A. M. Beale, S. J. Cooper and S. D. M. Jacques
{"title":"nDTomo:用于x射线化学成像和断层扫描的模块化Python工具包","authors":"A. Vamvakeros, E. Papoutsellis, H. Dong, R. Docherty, A. M. Beale, S. J. Cooper and S. D. M. Jacques","doi":"10.1039/D5DD00252D","DOIUrl":null,"url":null,"abstract":"<p >\r\n <em>nDTomo</em> is a Python-based software suite for the simulation, reconstruction and analysis of X-ray chemical imaging and computed tomography data. It provides a collection of Python function-based tools designed for accessibility and education as well as a graphical user interface. Prioritising transparency and ease of learning, <em>nDTomo</em> adopts a function-centric design that facilitates straightforward understanding and extension of core workflows, from phantom generation and pencil-beam tomography simulation to sinogram correction, tomographic reconstruction and peak fitting. While many scientific toolkits embrace object-oriented design for modularity and scalability, <em>nDTomo</em> instead emphasises pedagogical clarity, making it especially suitable for students and researchers entering the chemical imaging and tomography field. The suite also includes modern deep learning tools, such as a self-supervised neural network for peak analysis (PeakFitCNN) and a GPU-based direct least squares reconstruction (DLSR) approach for simultaneous tomographic reconstruction and parameter estimation. Rather than aiming to replace established tomography frameworks, <em>nDTomo</em> serves as an open, function-oriented environment for training, prototyping, and research in chemical imaging and tomography.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":" 9","pages":" 2579-2592"},"PeriodicalIF":6.2000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/dd/d5dd00252d?page=search","citationCount":"0","resultStr":"{\"title\":\"nDTomo: a modular Python toolkit for X-ray chemical imaging and tomography\",\"authors\":\"A. Vamvakeros, E. Papoutsellis, H. Dong, R. Docherty, A. M. Beale, S. J. Cooper and S. D. M. Jacques\",\"doi\":\"10.1039/D5DD00252D\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >\\r\\n <em>nDTomo</em> is a Python-based software suite for the simulation, reconstruction and analysis of X-ray chemical imaging and computed tomography data. It provides a collection of Python function-based tools designed for accessibility and education as well as a graphical user interface. Prioritising transparency and ease of learning, <em>nDTomo</em> adopts a function-centric design that facilitates straightforward understanding and extension of core workflows, from phantom generation and pencil-beam tomography simulation to sinogram correction, tomographic reconstruction and peak fitting. While many scientific toolkits embrace object-oriented design for modularity and scalability, <em>nDTomo</em> instead emphasises pedagogical clarity, making it especially suitable for students and researchers entering the chemical imaging and tomography field. The suite also includes modern deep learning tools, such as a self-supervised neural network for peak analysis (PeakFitCNN) and a GPU-based direct least squares reconstruction (DLSR) approach for simultaneous tomographic reconstruction and parameter estimation. Rather than aiming to replace established tomography frameworks, <em>nDTomo</em> serves as an open, function-oriented environment for training, prototyping, and research in chemical imaging and tomography.</p>\",\"PeriodicalId\":72816,\"journal\":{\"name\":\"Digital discovery\",\"volume\":\" 9\",\"pages\":\" 2579-2592\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/dd/d5dd00252d?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/dd/d5dd00252d\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital discovery","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/dd/d5dd00252d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

nDTomo是一个基于python的软件套件,用于模拟、重建和分析x射线化学成像和计算机断层扫描数据。它提供了一系列基于Python函数的工具,这些工具是为可访问性和教育设计的,还提供了一个图形用户界面。nDTomo优先考虑透明度和易学习性,采用以功能为中心的设计,便于直接理解和扩展核心工作流程,从幻影生成和铅笔束断层扫描模拟到sinogram correction,断层扫描重建和峰值拟合。虽然许多科学工具包都采用面向对象的模块化和可扩展性设计,但nDTomo却强调教学的清晰度,使其特别适合进入化学成像和断层扫描领域的学生和研究人员。该套件还包括现代深度学习工具,例如用于峰值分析的自监督神经网络(PeakFitCNN)和用于同时层析重建和参数估计的基于gpu的直接最小二乘重建(DLSR)方法。nDTomo的目标不是取代已建立的断层扫描框架,而是作为一个开放的、面向功能的环境,用于化学成像和断层扫描的培训、原型设计和研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

nDTomo: a modular Python toolkit for X-ray chemical imaging and tomography

nDTomo: a modular Python toolkit for X-ray chemical imaging and tomography

nDTomo is a Python-based software suite for the simulation, reconstruction and analysis of X-ray chemical imaging and computed tomography data. It provides a collection of Python function-based tools designed for accessibility and education as well as a graphical user interface. Prioritising transparency and ease of learning, nDTomo adopts a function-centric design that facilitates straightforward understanding and extension of core workflows, from phantom generation and pencil-beam tomography simulation to sinogram correction, tomographic reconstruction and peak fitting. While many scientific toolkits embrace object-oriented design for modularity and scalability, nDTomo instead emphasises pedagogical clarity, making it especially suitable for students and researchers entering the chemical imaging and tomography field. The suite also includes modern deep learning tools, such as a self-supervised neural network for peak analysis (PeakFitCNN) and a GPU-based direct least squares reconstruction (DLSR) approach for simultaneous tomographic reconstruction and parameter estimation. Rather than aiming to replace established tomography frameworks, nDTomo serves as an open, function-oriented environment for training, prototyping, and research in chemical imaging and tomography.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信