迈向可持续聚合物设计:一种基于分子动力学的玻璃体机器学习方法

IF 6.2 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yiwen Zheng, Agni K. Biswal, Yaqi Guo, Prakash Thakolkaran, Yash Kokane, Vikas Varshney, Siddhant Kumar and Aniruddh Vashisth
{"title":"迈向可持续聚合物设计:一种基于分子动力学的玻璃体机器学习方法","authors":"Yiwen Zheng, Agni K. Biswal, Yaqi Guo, Prakash Thakolkaran, Yash Kokane, Vikas Varshney, Siddhant Kumar and Aniruddh Vashisth","doi":"10.1039/D5DD00239G","DOIUrl":null,"url":null,"abstract":"<p >Vitrimers represent an emerging class of sustainable polymers with self-healing capabilities enabled by dynamic covalent adaptive networks. However, their limited molecular diversity constrains their property space and potential applications. Recent developments in machine learning (ML) techniques accelerate polymer design by predicting properties and virtually screening candidates, yet the scarcity of available experimental vitrimer data poses challenges in training ML models. To address this, we leverage molecular dynamics (MD) data generated by our previous work to train and benchmark seven ML models covering six feature representations for glass transition temperature (<em>T</em><small><sub>g</sub></small>) prediction. By averaging predicted <em>T</em><small><sub>g</sub></small> from different models, the model ensemble approach outperforms individual models, allowing for accurate and efficient property prediction on unlabeled datasets. Two novel vitrimers are identified and synthesized, exhibiting experimentally validated higher <em>T</em><small><sub>g</sub></small> than existing bifunctional transesterification vitrimers, along with demonstrated healability. This work explores the possibility of using MD data to train ML models in the absence of sufficient experimental data, enabling the discovery of novel, synthesizable polymer chemistries with a wide range of desirable properties. The integrated MD–ML approach offers polymer chemists an efficient tool for accurate property prediction and designing polymers tailored to diverse applications.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":" 9","pages":" 2559-2569"},"PeriodicalIF":6.2000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/dd/d5dd00239g?page=search","citationCount":"0","resultStr":"{\"title\":\"Toward sustainable polymer design: a molecular dynamics-informed machine learning approach for vitrimers\",\"authors\":\"Yiwen Zheng, Agni K. Biswal, Yaqi Guo, Prakash Thakolkaran, Yash Kokane, Vikas Varshney, Siddhant Kumar and Aniruddh Vashisth\",\"doi\":\"10.1039/D5DD00239G\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Vitrimers represent an emerging class of sustainable polymers with self-healing capabilities enabled by dynamic covalent adaptive networks. However, their limited molecular diversity constrains their property space and potential applications. Recent developments in machine learning (ML) techniques accelerate polymer design by predicting properties and virtually screening candidates, yet the scarcity of available experimental vitrimer data poses challenges in training ML models. To address this, we leverage molecular dynamics (MD) data generated by our previous work to train and benchmark seven ML models covering six feature representations for glass transition temperature (<em>T</em><small><sub>g</sub></small>) prediction. By averaging predicted <em>T</em><small><sub>g</sub></small> from different models, the model ensemble approach outperforms individual models, allowing for accurate and efficient property prediction on unlabeled datasets. Two novel vitrimers are identified and synthesized, exhibiting experimentally validated higher <em>T</em><small><sub>g</sub></small> than existing bifunctional transesterification vitrimers, along with demonstrated healability. This work explores the possibility of using MD data to train ML models in the absence of sufficient experimental data, enabling the discovery of novel, synthesizable polymer chemistries with a wide range of desirable properties. The integrated MD–ML approach offers polymer chemists an efficient tool for accurate property prediction and designing polymers tailored to diverse applications.</p>\",\"PeriodicalId\":72816,\"journal\":{\"name\":\"Digital discovery\",\"volume\":\" 9\",\"pages\":\" 2559-2569\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/dd/d5dd00239g?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/dd/d5dd00239g\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital discovery","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/dd/d5dd00239g","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

Vitrimers是一种新兴的可持续聚合物,通过动态共价自适应网络具有自修复能力。然而,它们有限的分子多样性限制了它们的性质空间和应用潜力。机器学习(ML)技术的最新发展通过预测性能和虚拟筛选候选物来加速聚合物的设计,但可用的实验玻璃体数据的缺乏对训练ML模型提出了挑战。为了解决这个问题,我们利用我们之前工作产生的分子动力学(MD)数据来训练和基准测试七个ML模型,这些模型涵盖了玻璃化转变温度(Tg)预测的六个特征表示。通过平均不同模型的预测Tg,模型集成方法优于单个模型,允许对未标记数据集进行准确有效的属性预测。鉴定并合成了两种新型的玻璃体,实验验证了它们比现有的双功能酯交换玻璃体具有更高的Tg,并且具有良好的可治愈性。这项工作探索了在缺乏足够实验数据的情况下使用MD数据来训练ML模型的可能性,从而能够发现具有广泛理想性能的新型可合成聚合物化学物质。集成的MD-ML方法为聚合物化学家提供了一种有效的工具,用于准确预测性能和设计适合不同应用的聚合物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Toward sustainable polymer design: a molecular dynamics-informed machine learning approach for vitrimers

Toward sustainable polymer design: a molecular dynamics-informed machine learning approach for vitrimers

Vitrimers represent an emerging class of sustainable polymers with self-healing capabilities enabled by dynamic covalent adaptive networks. However, their limited molecular diversity constrains their property space and potential applications. Recent developments in machine learning (ML) techniques accelerate polymer design by predicting properties and virtually screening candidates, yet the scarcity of available experimental vitrimer data poses challenges in training ML models. To address this, we leverage molecular dynamics (MD) data generated by our previous work to train and benchmark seven ML models covering six feature representations for glass transition temperature (Tg) prediction. By averaging predicted Tg from different models, the model ensemble approach outperforms individual models, allowing for accurate and efficient property prediction on unlabeled datasets. Two novel vitrimers are identified and synthesized, exhibiting experimentally validated higher Tg than existing bifunctional transesterification vitrimers, along with demonstrated healability. This work explores the possibility of using MD data to train ML models in the absence of sufficient experimental data, enabling the discovery of novel, synthesizable polymer chemistries with a wide range of desirable properties. The integrated MD–ML approach offers polymer chemists an efficient tool for accurate property prediction and designing polymers tailored to diverse applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信