师生培训提高了机器学习原子间势的准确性和效率

IF 6.2 Q1 CHEMISTRY, MULTIDISCIPLINARY
Sakib Matin, Alice E. A. Allen, Emily Shinkle, Aleksandra Pachalieva, Galen T. Craven, Benjamin Nebgen, Justin S. Smith, Richard Messerly, Ying Wai Li, Sergei Tretiak, Kipton Barros and Nicholas Lubbers
{"title":"师生培训提高了机器学习原子间势的准确性和效率","authors":"Sakib Matin, Alice E. A. Allen, Emily Shinkle, Aleksandra Pachalieva, Galen T. Craven, Benjamin Nebgen, Justin S. Smith, Richard Messerly, Ying Wai Li, Sergei Tretiak, Kipton Barros and Nicholas Lubbers","doi":"10.1039/D5DD00085H","DOIUrl":null,"url":null,"abstract":"<p >Machine learning interatomic potentials (MLIPs) are revolutionizing the field of molecular dynamics (MD) simulations. Recent MLIPs have tended towards more complex architectures trained on larger datasets. The resulting increase in computational and memory costs may prohibit the application of these MLIPs to perform large-scale MD simulations. Herein, we present a teacher-student training framework in which the latent knowledge from the teacher (atomic energies) is used to augment the students' training. We show that the light-weight student MLIPs have faster MD speeds at a fraction of the memory footprint compared to the teacher models. Remarkably, the student models can even surpass the accuracy of the teachers, even though both are trained on the same quantum chemistry dataset. Our work highlights a practical method for MLIPs to reduce the resources required for large-scale MD simulations.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":" 9","pages":" 2502-2511"},"PeriodicalIF":6.2000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/dd/d5dd00085h?page=search","citationCount":"0","resultStr":"{\"title\":\"Teacher-student training improves the accuracy and efficiency of machine learning interatomic potentials\",\"authors\":\"Sakib Matin, Alice E. A. Allen, Emily Shinkle, Aleksandra Pachalieva, Galen T. Craven, Benjamin Nebgen, Justin S. Smith, Richard Messerly, Ying Wai Li, Sergei Tretiak, Kipton Barros and Nicholas Lubbers\",\"doi\":\"10.1039/D5DD00085H\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Machine learning interatomic potentials (MLIPs) are revolutionizing the field of molecular dynamics (MD) simulations. Recent MLIPs have tended towards more complex architectures trained on larger datasets. The resulting increase in computational and memory costs may prohibit the application of these MLIPs to perform large-scale MD simulations. Herein, we present a teacher-student training framework in which the latent knowledge from the teacher (atomic energies) is used to augment the students' training. We show that the light-weight student MLIPs have faster MD speeds at a fraction of the memory footprint compared to the teacher models. Remarkably, the student models can even surpass the accuracy of the teachers, even though both are trained on the same quantum chemistry dataset. Our work highlights a practical method for MLIPs to reduce the resources required for large-scale MD simulations.</p>\",\"PeriodicalId\":72816,\"journal\":{\"name\":\"Digital discovery\",\"volume\":\" 9\",\"pages\":\" 2502-2511\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/dd/d5dd00085h?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/dd/d5dd00085h\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital discovery","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/dd/d5dd00085h","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

机器学习原子间势(MLIPs)正在彻底改变分子动力学(MD)模拟领域。最近的mlip倾向于在更大的数据集上训练更复杂的架构。由此导致的计算和内存成本的增加可能会禁止这些mlip应用于执行大规模MD模拟。在此,我们提出了一个师生训练框架,其中教师的潜在知识(原子能)被用来增强学生的训练。我们表明,与教师模型相比,轻量级学生mlip在内存占用的一小部分上具有更快的MD速度。值得注意的是,学生模型甚至可以超过教师模型的准确性,尽管两者都是在相同的量子化学数据集上训练的。我们的工作强调了mlip减少大规模MD模拟所需资源的实用方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Teacher-student training improves the accuracy and efficiency of machine learning interatomic potentials

Teacher-student training improves the accuracy and efficiency of machine learning interatomic potentials

Machine learning interatomic potentials (MLIPs) are revolutionizing the field of molecular dynamics (MD) simulations. Recent MLIPs have tended towards more complex architectures trained on larger datasets. The resulting increase in computational and memory costs may prohibit the application of these MLIPs to perform large-scale MD simulations. Herein, we present a teacher-student training framework in which the latent knowledge from the teacher (atomic energies) is used to augment the students' training. We show that the light-weight student MLIPs have faster MD speeds at a fraction of the memory footprint compared to the teacher models. Remarkably, the student models can even surpass the accuracy of the teachers, even though both are trained on the same quantum chemistry dataset. Our work highlights a practical method for MLIPs to reduce the resources required for large-scale MD simulations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信