合成化学应用中的多模态学习:气相色谱保留时间预测和同分异构体分离优化

IF 6.2 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jinglong Lin, Longyin Song, Yuntian Chen, Chengchun Liu, Shufeng Chen and Fanyang Mo
{"title":"合成化学应用中的多模态学习:气相色谱保留时间预测和同分异构体分离优化","authors":"Jinglong Lin, Longyin Song, Yuntian Chen, Chengchun Liu, Shufeng Chen and Fanyang Mo","doi":"10.1039/D4DD00369A","DOIUrl":null,"url":null,"abstract":"<p >Multimodal learning, a key machine learning (ML) approach, has been extensively applied in fields such as medical diagnostics and recommendation systems. The complexity of chemical data offers unique opportunities for multimodal learning, though its application in chemistry remains underexplored. Here, we propose an innovative multimodal framework for gas chromatography (GC) that integrates a geometry-enhanced graph isomorphism network and gated recurrent units. This framework predicts GC retention time across diverse molecular heating profiles with a test set <em>R</em><small><sup>2</sup></small> of 0.995, outperforming traditional ML methods. It effectively recommends optimal chromatographic conditions for separating positional isomers and <em>cis</em>/<em>trans</em> isomers, minimizing experimental iterations and significantly improving analytical efficiency. Moreover, the model provides insights into the separation challenges of various isomers, enhancing understanding of the relationship between molecular structure and chromatographic behavior. This approach could pave the way for broader applications of multimodal learning in chemistry.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":" 9","pages":" 2465-2477"},"PeriodicalIF":6.2000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/dd/d4dd00369a?page=search","citationCount":"0","resultStr":"{\"title\":\"Multimodal learning in synthetic chemistry applications: gas chromatography retention time prediction and isomer separation optimization\",\"authors\":\"Jinglong Lin, Longyin Song, Yuntian Chen, Chengchun Liu, Shufeng Chen and Fanyang Mo\",\"doi\":\"10.1039/D4DD00369A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Multimodal learning, a key machine learning (ML) approach, has been extensively applied in fields such as medical diagnostics and recommendation systems. The complexity of chemical data offers unique opportunities for multimodal learning, though its application in chemistry remains underexplored. Here, we propose an innovative multimodal framework for gas chromatography (GC) that integrates a geometry-enhanced graph isomorphism network and gated recurrent units. This framework predicts GC retention time across diverse molecular heating profiles with a test set <em>R</em><small><sup>2</sup></small> of 0.995, outperforming traditional ML methods. It effectively recommends optimal chromatographic conditions for separating positional isomers and <em>cis</em>/<em>trans</em> isomers, minimizing experimental iterations and significantly improving analytical efficiency. Moreover, the model provides insights into the separation challenges of various isomers, enhancing understanding of the relationship between molecular structure and chromatographic behavior. This approach could pave the way for broader applications of multimodal learning in chemistry.</p>\",\"PeriodicalId\":72816,\"journal\":{\"name\":\"Digital discovery\",\"volume\":\" 9\",\"pages\":\" 2465-2477\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/dd/d4dd00369a?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/dd/d4dd00369a\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital discovery","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/dd/d4dd00369a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

多模态学习是一种重要的机器学习方法,已广泛应用于医学诊断和推荐系统等领域。化学数据的复杂性为多模式学习提供了独特的机会,尽管其在化学中的应用仍未得到充分探索。在这里,我们提出了一个创新的气相色谱(GC)的多模态框架,它集成了一个几何增强的图同构网络和门控循环单元。该框架预测不同分子加热剖面的GC保留时间,测试集R2为0.995,优于传统的ML方法。它有效地推荐了分离位置异构体和顺式/反式异构体的最佳色谱条件,减少了实验迭代,显著提高了分析效率。此外,该模型提供了对各种异构体分离挑战的见解,增强了对分子结构和色谱行为之间关系的理解。这种方法可以为多模式学习在化学中的广泛应用铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Multimodal learning in synthetic chemistry applications: gas chromatography retention time prediction and isomer separation optimization

Multimodal learning in synthetic chemistry applications: gas chromatography retention time prediction and isomer separation optimization

Multimodal learning, a key machine learning (ML) approach, has been extensively applied in fields such as medical diagnostics and recommendation systems. The complexity of chemical data offers unique opportunities for multimodal learning, though its application in chemistry remains underexplored. Here, we propose an innovative multimodal framework for gas chromatography (GC) that integrates a geometry-enhanced graph isomorphism network and gated recurrent units. This framework predicts GC retention time across diverse molecular heating profiles with a test set R2 of 0.995, outperforming traditional ML methods. It effectively recommends optimal chromatographic conditions for separating positional isomers and cis/trans isomers, minimizing experimental iterations and significantly improving analytical efficiency. Moreover, the model provides insights into the separation challenges of various isomers, enhancing understanding of the relationship between molecular structure and chromatographic behavior. This approach could pave the way for broader applications of multimodal learning in chemistry.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信