{"title":"基于熵的语言模型数据选择","authors":"Hongming Li;Yang Liu;Chao Huang","doi":"10.1109/ACCESS.2025.3605290","DOIUrl":null,"url":null,"abstract":"Modern language models (LMs) increasingly require two critical resources: computational resources and data resources. Data selection techniques can effectively reduce the amount of training data required for fine-tuning LMs. However, their effectiveness is closely related to computational resources, which always require a high compute budget. Owing to the resource limitations in practical fine-tuning scenario, we systematically reveal the relationship between data selection and uncertainty estimation of selected data. Although large language models (LLMs) exhibit exceptional capabilities in language understanding and generation, which provide new ways to alleviate data scarcity, evaluating data usability remains a challenging task. This makes efficient data selection indispensable. To mitigate these issues, we propose Entropy-Based Unsupervised Data Selection (EUDS) framework. Empirical experiments on sentiment analysis (SA), topic classification (Topic-CLS), and question answering (Q&A) tasks validate its effectiveness. EUDS establishes a computationally efficient data-filtering mechanism. Theoretical analysis and experimental results confirm the effectiveness of our approach. EUDS significantly reduces computational costs and improves training time efficiency with less data requirement. This provides an innovative solution for the efficient fine-tuning of LMs in the compute-constrained scenarios.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"13 ","pages":"153713-153727"},"PeriodicalIF":3.6000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11146774","citationCount":"0","resultStr":"{\"title\":\"Entropy-Based Data Selection for Language Models\",\"authors\":\"Hongming Li;Yang Liu;Chao Huang\",\"doi\":\"10.1109/ACCESS.2025.3605290\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern language models (LMs) increasingly require two critical resources: computational resources and data resources. Data selection techniques can effectively reduce the amount of training data required for fine-tuning LMs. However, their effectiveness is closely related to computational resources, which always require a high compute budget. Owing to the resource limitations in practical fine-tuning scenario, we systematically reveal the relationship between data selection and uncertainty estimation of selected data. Although large language models (LLMs) exhibit exceptional capabilities in language understanding and generation, which provide new ways to alleviate data scarcity, evaluating data usability remains a challenging task. This makes efficient data selection indispensable. To mitigate these issues, we propose Entropy-Based Unsupervised Data Selection (EUDS) framework. Empirical experiments on sentiment analysis (SA), topic classification (Topic-CLS), and question answering (Q&A) tasks validate its effectiveness. EUDS establishes a computationally efficient data-filtering mechanism. Theoretical analysis and experimental results confirm the effectiveness of our approach. EUDS significantly reduces computational costs and improves training time efficiency with less data requirement. This provides an innovative solution for the efficient fine-tuning of LMs in the compute-constrained scenarios.\",\"PeriodicalId\":13079,\"journal\":{\"name\":\"IEEE Access\",\"volume\":\"13 \",\"pages\":\"153713-153727\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11146774\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Access\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11146774/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11146774/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Modern language models (LMs) increasingly require two critical resources: computational resources and data resources. Data selection techniques can effectively reduce the amount of training data required for fine-tuning LMs. However, their effectiveness is closely related to computational resources, which always require a high compute budget. Owing to the resource limitations in practical fine-tuning scenario, we systematically reveal the relationship between data selection and uncertainty estimation of selected data. Although large language models (LLMs) exhibit exceptional capabilities in language understanding and generation, which provide new ways to alleviate data scarcity, evaluating data usability remains a challenging task. This makes efficient data selection indispensable. To mitigate these issues, we propose Entropy-Based Unsupervised Data Selection (EUDS) framework. Empirical experiments on sentiment analysis (SA), topic classification (Topic-CLS), and question answering (Q&A) tasks validate its effectiveness. EUDS establishes a computationally efficient data-filtering mechanism. Theoretical analysis and experimental results confirm the effectiveness of our approach. EUDS significantly reduces computational costs and improves training time efficiency with less data requirement. This provides an innovative solution for the efficient fine-tuning of LMs in the compute-constrained scenarios.
IEEE AccessCOMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍:
IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest.
IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on:
Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals.
Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering.
Development of new or improved fabrication or manufacturing techniques.
Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.