基于熵的语言模型数据选择

IF 3.6 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Hongming Li;Yang Liu;Chao Huang
{"title":"基于熵的语言模型数据选择","authors":"Hongming Li;Yang Liu;Chao Huang","doi":"10.1109/ACCESS.2025.3605290","DOIUrl":null,"url":null,"abstract":"Modern language models (LMs) increasingly require two critical resources: computational resources and data resources. Data selection techniques can effectively reduce the amount of training data required for fine-tuning LMs. However, their effectiveness is closely related to computational resources, which always require a high compute budget. Owing to the resource limitations in practical fine-tuning scenario, we systematically reveal the relationship between data selection and uncertainty estimation of selected data. Although large language models (LLMs) exhibit exceptional capabilities in language understanding and generation, which provide new ways to alleviate data scarcity, evaluating data usability remains a challenging task. This makes efficient data selection indispensable. To mitigate these issues, we propose Entropy-Based Unsupervised Data Selection (EUDS) framework. Empirical experiments on sentiment analysis (SA), topic classification (Topic-CLS), and question answering (Q&A) tasks validate its effectiveness. EUDS establishes a computationally efficient data-filtering mechanism. Theoretical analysis and experimental results confirm the effectiveness of our approach. EUDS significantly reduces computational costs and improves training time efficiency with less data requirement. This provides an innovative solution for the efficient fine-tuning of LMs in the compute-constrained scenarios.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"13 ","pages":"153713-153727"},"PeriodicalIF":3.6000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11146774","citationCount":"0","resultStr":"{\"title\":\"Entropy-Based Data Selection for Language Models\",\"authors\":\"Hongming Li;Yang Liu;Chao Huang\",\"doi\":\"10.1109/ACCESS.2025.3605290\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern language models (LMs) increasingly require two critical resources: computational resources and data resources. Data selection techniques can effectively reduce the amount of training data required for fine-tuning LMs. However, their effectiveness is closely related to computational resources, which always require a high compute budget. Owing to the resource limitations in practical fine-tuning scenario, we systematically reveal the relationship between data selection and uncertainty estimation of selected data. Although large language models (LLMs) exhibit exceptional capabilities in language understanding and generation, which provide new ways to alleviate data scarcity, evaluating data usability remains a challenging task. This makes efficient data selection indispensable. To mitigate these issues, we propose Entropy-Based Unsupervised Data Selection (EUDS) framework. Empirical experiments on sentiment analysis (SA), topic classification (Topic-CLS), and question answering (Q&A) tasks validate its effectiveness. EUDS establishes a computationally efficient data-filtering mechanism. Theoretical analysis and experimental results confirm the effectiveness of our approach. EUDS significantly reduces computational costs and improves training time efficiency with less data requirement. This provides an innovative solution for the efficient fine-tuning of LMs in the compute-constrained scenarios.\",\"PeriodicalId\":13079,\"journal\":{\"name\":\"IEEE Access\",\"volume\":\"13 \",\"pages\":\"153713-153727\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11146774\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Access\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11146774/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11146774/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

现代语言模型(LMs)越来越需要两个关键资源:计算资源和数据资源。数据选择技术可以有效地减少微调lm所需的训练数据量。然而,它们的有效性与计算资源密切相关,计算资源总是需要很高的计算预算。由于实际微调场景的资源限制,我们系统地揭示了数据选择与所选数据的不确定性估计之间的关系。尽管大型语言模型(llm)在语言理解和生成方面表现出卓越的能力,为缓解数据稀缺提供了新的方法,但评估数据可用性仍然是一项具有挑战性的任务。这使得有效的数据选择必不可少。为了缓解这些问题,我们提出了基于熵的无监督数据选择(EUDS)框架。在情感分析(SA)、主题分类(topic - cls)和问答(Q&A)任务上的实证实验验证了其有效性。EUDS建立了一种计算效率高的数据过滤机制。理论分析和实验结果证实了该方法的有效性。EUDS显著降低了计算成本,并以较少的数据需求提高了训练时间效率。这为在计算受限的场景中对lm进行有效的微调提供了一种创新的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Entropy-Based Data Selection for Language Models
Modern language models (LMs) increasingly require two critical resources: computational resources and data resources. Data selection techniques can effectively reduce the amount of training data required for fine-tuning LMs. However, their effectiveness is closely related to computational resources, which always require a high compute budget. Owing to the resource limitations in practical fine-tuning scenario, we systematically reveal the relationship between data selection and uncertainty estimation of selected data. Although large language models (LLMs) exhibit exceptional capabilities in language understanding and generation, which provide new ways to alleviate data scarcity, evaluating data usability remains a challenging task. This makes efficient data selection indispensable. To mitigate these issues, we propose Entropy-Based Unsupervised Data Selection (EUDS) framework. Empirical experiments on sentiment analysis (SA), topic classification (Topic-CLS), and question answering (Q&A) tasks validate its effectiveness. EUDS establishes a computationally efficient data-filtering mechanism. Theoretical analysis and experimental results confirm the effectiveness of our approach. EUDS significantly reduces computational costs and improves training time efficiency with less data requirement. This provides an innovative solution for the efficient fine-tuning of LMs in the compute-constrained scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Access
IEEE Access COMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍: IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest. IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on: Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals. Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering. Development of new or improved fabrication or manufacturing techniques. Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信