SATVIO:基于立体注意的视觉惯性里程计

Raoof Doorshi;Hajira Saleem;Reza Malekian
{"title":"SATVIO:基于立体注意的视觉惯性里程计","authors":"Raoof Doorshi;Hajira Saleem;Reza Malekian","doi":"10.1109/JSAS.2025.3601056","DOIUrl":null,"url":null,"abstract":"This study introduces a novel stereo attention-based visual inertial odometry model, namely, SATVIO, aiming to enhance odometry performance by leveraging deep learning techniques for sensor fusion. The research evaluates the SATVIO model against existing visual odometry methods using the KITTI odometry dataset, focusing on translational and rotational accuracy enhancements through innovative attention mechanisms and early fusion strategies. The proposed model integrates convolutional neural networks and long short-term memory networks to process and fuse data from stereo image inputs and inertial measurements effectively. SATVIO model particularly employs triplet attention and early fusion techniques with the aim of addressing the challenges posed by scale ambiguity and environmental changes. The results demonstrates that our proposed model outperforms traditional methods in specific configurations, thus demonstrating competitive or superior performance on key challenging sequences.","PeriodicalId":100622,"journal":{"name":"IEEE Journal of Selected Areas in Sensors","volume":"2 ","pages":"259-265"},"PeriodicalIF":0.0000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11133748","citationCount":"0","resultStr":"{\"title\":\"SATVIO: Stereo Attention-Based Visual Inertial Odometry\",\"authors\":\"Raoof Doorshi;Hajira Saleem;Reza Malekian\",\"doi\":\"10.1109/JSAS.2025.3601056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study introduces a novel stereo attention-based visual inertial odometry model, namely, SATVIO, aiming to enhance odometry performance by leveraging deep learning techniques for sensor fusion. The research evaluates the SATVIO model against existing visual odometry methods using the KITTI odometry dataset, focusing on translational and rotational accuracy enhancements through innovative attention mechanisms and early fusion strategies. The proposed model integrates convolutional neural networks and long short-term memory networks to process and fuse data from stereo image inputs and inertial measurements effectively. SATVIO model particularly employs triplet attention and early fusion techniques with the aim of addressing the challenges posed by scale ambiguity and environmental changes. The results demonstrates that our proposed model outperforms traditional methods in specific configurations, thus demonstrating competitive or superior performance on key challenging sequences.\",\"PeriodicalId\":100622,\"journal\":{\"name\":\"IEEE Journal of Selected Areas in Sensors\",\"volume\":\"2 \",\"pages\":\"259-265\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11133748\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Selected Areas in Sensors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11133748/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Areas in Sensors","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11133748/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究引入了一种新的基于立体注意力的视觉惯性里程计模型,即SATVIO,旨在通过利用深度学习技术进行传感器融合来提高里程计性能。该研究使用KITTI里程计数据集对SATVIO模型与现有视觉里程计方法进行了评估,重点关注通过创新的注意力机制和早期融合策略提高平移和旋转精度。该模型集成了卷积神经网络和长短期记忆网络,有效地处理和融合了来自立体图像输入和惯性测量的数据。SATVIO模型特别采用三重关注和早期融合技术,旨在解决规模模糊和环境变化带来的挑战。结果表明,我们提出的模型在特定配置下优于传统方法,从而在关键挑战性序列上表现出竞争性或优越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SATVIO: Stereo Attention-Based Visual Inertial Odometry
This study introduces a novel stereo attention-based visual inertial odometry model, namely, SATVIO, aiming to enhance odometry performance by leveraging deep learning techniques for sensor fusion. The research evaluates the SATVIO model against existing visual odometry methods using the KITTI odometry dataset, focusing on translational and rotational accuracy enhancements through innovative attention mechanisms and early fusion strategies. The proposed model integrates convolutional neural networks and long short-term memory networks to process and fuse data from stereo image inputs and inertial measurements effectively. SATVIO model particularly employs triplet attention and early fusion techniques with the aim of addressing the challenges posed by scale ambiguity and environmental changes. The results demonstrates that our proposed model outperforms traditional methods in specific configurations, thus demonstrating competitive or superior performance on key challenging sequences.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信