斯托克斯问题的一致压力公式及其近似

IF 7.3 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Melvin Creff, Jean-Luc Guermond
{"title":"斯托克斯问题的一致压力公式及其近似","authors":"Melvin Creff,&nbsp;Jean-Luc Guermond","doi":"10.1016/j.cma.2025.118333","DOIUrl":null,"url":null,"abstract":"<div><div>A non-conforming approximation of a non standard formulation of the generalized Stokes problem is proposed using continuous finite elements. The stability, convergence, and scalability properties of the method are numerically tested. Four key features of the method are as follows: (i) It is observed to converge optimally with pairs of equal order; (ii) The resulting algebraic system is simple to precondition; (iii) The formulation is pressure-robust for equal pairs; (iv) The formulation is particularly well adapted for the approximation of the time-dependent incompressible Navier-Stokes equations.</div></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":"447 ","pages":"Article 118333"},"PeriodicalIF":7.3000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Consistent pressure formulation of the Stokes problem and approximation thereof\",\"authors\":\"Melvin Creff,&nbsp;Jean-Luc Guermond\",\"doi\":\"10.1016/j.cma.2025.118333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A non-conforming approximation of a non standard formulation of the generalized Stokes problem is proposed using continuous finite elements. The stability, convergence, and scalability properties of the method are numerically tested. Four key features of the method are as follows: (i) It is observed to converge optimally with pairs of equal order; (ii) The resulting algebraic system is simple to precondition; (iii) The formulation is pressure-robust for equal pairs; (iv) The formulation is particularly well adapted for the approximation of the time-dependent incompressible Navier-Stokes equations.</div></div>\",\"PeriodicalId\":55222,\"journal\":{\"name\":\"Computer Methods in Applied Mechanics and Engineering\",\"volume\":\"447 \",\"pages\":\"Article 118333\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2025-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Applied Mechanics and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S004578252500605X\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S004578252500605X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

用连续有限元方法对广义Stokes问题的非标准形式给出了非协调近似。数值验证了该方法的稳定性、收敛性和可扩展性。该方法的四个关键特征如下:(1)观察到对等阶的最优收敛;所得到的代数系统易于预设;(iii)公式对相等对具有压力稳健性;(iv)该公式特别适用于与时间有关的不可压缩的Navier-Stokes方程的近似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Consistent pressure formulation of the Stokes problem and approximation thereof
A non-conforming approximation of a non standard formulation of the generalized Stokes problem is proposed using continuous finite elements. The stability, convergence, and scalability properties of the method are numerically tested. Four key features of the method are as follows: (i) It is observed to converge optimally with pairs of equal order; (ii) The resulting algebraic system is simple to precondition; (iii) The formulation is pressure-robust for equal pairs; (iv) The formulation is particularly well adapted for the approximation of the time-dependent incompressible Navier-Stokes equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.70
自引率
15.30%
发文量
719
审稿时长
44 days
期刊介绍: Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信