一种新的多速率工业过程质量预测动态变分跟踪补偿网络

IF 9.1 1区 计算机科学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Shihao Duan, Hengqian Wang, Chuang Peng, Lei Chen, Kuangrong Hao
{"title":"一种新的多速率工业过程质量预测动态变分跟踪补偿网络","authors":"Shihao Duan,&nbsp;Hengqian Wang,&nbsp;Chuang Peng,&nbsp;Lei Chen,&nbsp;Kuangrong Hao","doi":"10.1016/j.compind.2025.104364","DOIUrl":null,"url":null,"abstract":"<div><div>Quality prediction holds significant importance in monitoring industrial processes, with soft sensors proving to be highly effective in this domain. However, industrial processes frequently exhibit multirate characteristics due to measurement and cost limitations. The characteristics lead to periodic missing and varying dynamics of variables at different sampling rates, further presenting substantial challenges to current soft sensor techniques. To tackle the obstacles, we propose a Multirate Dynamic Variational Compensation Network with Tracking (MR-TDVCN). Utilizing a generic preprocessor and dynamic variational inference, MR-TDVCN effectively captures and characterizes crucial and diverse temporal dynamics related to multiple sampling rates, enabling comprehensive dynamic modeling of inhomogeneous multirate data. Based on this, a feature prism dynamic compensation network is developed to process multirate sequences for local feature compensation and global temporal relationship correction hierarchically and progressively. This mitigates the information loss due to multirate sampling, providing richer and more holistic feature representations for quality prediction. Finally, a feature tracking strategy is customized for multirate processes to alleviate the label sparsity problem. MR-TDVCN demonstrates superior performance on the common debutanizer column dataset, outperforming existing models. It is further applied to the polyester esterification process dataset to address real-world multirate challenges.</div></div>","PeriodicalId":55219,"journal":{"name":"Computers in Industry","volume":"173 ","pages":"Article 104364"},"PeriodicalIF":9.1000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel dynamic variational compensation network with tracking for quality prediction of multirate industrial processes\",\"authors\":\"Shihao Duan,&nbsp;Hengqian Wang,&nbsp;Chuang Peng,&nbsp;Lei Chen,&nbsp;Kuangrong Hao\",\"doi\":\"10.1016/j.compind.2025.104364\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Quality prediction holds significant importance in monitoring industrial processes, with soft sensors proving to be highly effective in this domain. However, industrial processes frequently exhibit multirate characteristics due to measurement and cost limitations. The characteristics lead to periodic missing and varying dynamics of variables at different sampling rates, further presenting substantial challenges to current soft sensor techniques. To tackle the obstacles, we propose a Multirate Dynamic Variational Compensation Network with Tracking (MR-TDVCN). Utilizing a generic preprocessor and dynamic variational inference, MR-TDVCN effectively captures and characterizes crucial and diverse temporal dynamics related to multiple sampling rates, enabling comprehensive dynamic modeling of inhomogeneous multirate data. Based on this, a feature prism dynamic compensation network is developed to process multirate sequences for local feature compensation and global temporal relationship correction hierarchically and progressively. This mitigates the information loss due to multirate sampling, providing richer and more holistic feature representations for quality prediction. Finally, a feature tracking strategy is customized for multirate processes to alleviate the label sparsity problem. MR-TDVCN demonstrates superior performance on the common debutanizer column dataset, outperforming existing models. It is further applied to the polyester esterification process dataset to address real-world multirate challenges.</div></div>\",\"PeriodicalId\":55219,\"journal\":{\"name\":\"Computers in Industry\",\"volume\":\"173 \",\"pages\":\"Article 104364\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers in Industry\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166361525001290\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in Industry","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166361525001290","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

质量预测在监测工业过程中具有重要意义,软传感器在这一领域被证明是非常有效的。然而,由于测量和成本限制,工业过程经常表现出多速率特征。这些特性导致了不同采样率下变量的周期性缺失和动态变化,进一步对当前的软测量技术提出了实质性的挑战。为了克服这些障碍,我们提出了一种多速率动态变分补偿网络(MR-TDVCN)。利用通用预处理器和动态变分推理,MR-TDVCN有效地捕获和表征了与多采样率相关的关键和多样的时间动态,从而实现了非均匀多速率数据的全面动态建模。在此基础上,提出了一种特征棱镜动态补偿网络,对多速率序列进行分层递进的局部特征补偿和全局时间关系校正。这减轻了多速率采样带来的信息损失,为质量预测提供了更丰富、更全面的特征表示。最后,针对多速率过程定制了一种特征跟踪策略,以缓解标签稀疏性问题。MR-TDVCN在普通调试器列数据集上表现出优越的性能,优于现有模型。它进一步应用于聚酯酯化过程数据集,以解决现实世界的多速率挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel dynamic variational compensation network with tracking for quality prediction of multirate industrial processes
Quality prediction holds significant importance in monitoring industrial processes, with soft sensors proving to be highly effective in this domain. However, industrial processes frequently exhibit multirate characteristics due to measurement and cost limitations. The characteristics lead to periodic missing and varying dynamics of variables at different sampling rates, further presenting substantial challenges to current soft sensor techniques. To tackle the obstacles, we propose a Multirate Dynamic Variational Compensation Network with Tracking (MR-TDVCN). Utilizing a generic preprocessor and dynamic variational inference, MR-TDVCN effectively captures and characterizes crucial and diverse temporal dynamics related to multiple sampling rates, enabling comprehensive dynamic modeling of inhomogeneous multirate data. Based on this, a feature prism dynamic compensation network is developed to process multirate sequences for local feature compensation and global temporal relationship correction hierarchically and progressively. This mitigates the information loss due to multirate sampling, providing richer and more holistic feature representations for quality prediction. Finally, a feature tracking strategy is customized for multirate processes to alleviate the label sparsity problem. MR-TDVCN demonstrates superior performance on the common debutanizer column dataset, outperforming existing models. It is further applied to the polyester esterification process dataset to address real-world multirate challenges.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers in Industry
Computers in Industry 工程技术-计算机:跨学科应用
CiteScore
18.90
自引率
8.00%
发文量
152
审稿时长
22 days
期刊介绍: The objective of Computers in Industry is to present original, high-quality, application-oriented research papers that: • Illuminate emerging trends and possibilities in the utilization of Information and Communication Technology in industry; • Establish connections or integrations across various technology domains within the expansive realm of computer applications for industry; • Foster connections or integrations across diverse application areas of ICT in industry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信