结构特性在通过数据同化可靠预测CGLE中的作用

IF 2.9 3区 数学 Q1 MATHEMATICS, APPLIED
Jing Li , Tianli Hu
{"title":"结构特性在通过数据同化可靠预测CGLE中的作用","authors":"Jing Li ,&nbsp;Tianli Hu","doi":"10.1016/j.physd.2025.134916","DOIUrl":null,"url":null,"abstract":"<div><div>The complex Ginzburg–Landau equation (CGLE) is known to exhibit chaotic behavior under certain parametric setups, making long-term prediction challenging due to numerical errors. By leveraging a reference solution obtained from clean numerical simulation (CNS), we compare two different data assimilation strategies using the ensemble Kalman filter (EnKF). Interestingly, the reduced-order model (ROM), despite having larger numerical errors, outperforms the commonly used full-order model (FOM). A detailed analysis reveals that the structural properties of the dynamics play a crucial role in ensuring reliable long-term predictions when the EnKF is applied since the modes of the ROM are particularly effective in preserving these structural properties.</div></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":"483 ","pages":"Article 134916"},"PeriodicalIF":2.9000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Role of structural properties in reliable prediction of CGLE via data assimilation\",\"authors\":\"Jing Li ,&nbsp;Tianli Hu\",\"doi\":\"10.1016/j.physd.2025.134916\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The complex Ginzburg–Landau equation (CGLE) is known to exhibit chaotic behavior under certain parametric setups, making long-term prediction challenging due to numerical errors. By leveraging a reference solution obtained from clean numerical simulation (CNS), we compare two different data assimilation strategies using the ensemble Kalman filter (EnKF). Interestingly, the reduced-order model (ROM), despite having larger numerical errors, outperforms the commonly used full-order model (FOM). A detailed analysis reveals that the structural properties of the dynamics play a crucial role in ensuring reliable long-term predictions when the EnKF is applied since the modes of the ROM are particularly effective in preserving these structural properties.</div></div>\",\"PeriodicalId\":20050,\"journal\":{\"name\":\"Physica D: Nonlinear Phenomena\",\"volume\":\"483 \",\"pages\":\"Article 134916\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica D: Nonlinear Phenomena\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167278925003938\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278925003938","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

已知复杂的金兹堡-朗道方程(CGLE)在某些参数设置下表现出混沌行为,由于数值误差使长期预测具有挑战性。通过利用从干净数值模拟(CNS)获得的参考解,我们比较了使用集成卡尔曼滤波器(EnKF)的两种不同的数据同化策略。有趣的是,降阶模型(ROM)尽管有较大的数值误差,但性能优于常用的全阶模型(FOM)。详细的分析表明,当应用EnKF时,动力学的结构特性在确保可靠的长期预测中起着至关重要的作用,因为ROM的模式在保留这些结构特性方面特别有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Role of structural properties in reliable prediction of CGLE via data assimilation
The complex Ginzburg–Landau equation (CGLE) is known to exhibit chaotic behavior under certain parametric setups, making long-term prediction challenging due to numerical errors. By leveraging a reference solution obtained from clean numerical simulation (CNS), we compare two different data assimilation strategies using the ensemble Kalman filter (EnKF). Interestingly, the reduced-order model (ROM), despite having larger numerical errors, outperforms the commonly used full-order model (FOM). A detailed analysis reveals that the structural properties of the dynamics play a crucial role in ensuring reliable long-term predictions when the EnKF is applied since the modes of the ROM are particularly effective in preserving these structural properties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physica D: Nonlinear Phenomena
Physica D: Nonlinear Phenomena 物理-物理:数学物理
CiteScore
7.30
自引率
7.50%
发文量
213
审稿时长
65 days
期刊介绍: Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信