噪声Koopman模型的识别

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Moritz Woelk, Wentao Tang
{"title":"噪声Koopman模型的识别","authors":"Moritz Woelk,&nbsp;Wentao Tang","doi":"10.1016/j.compchemeng.2025.109366","DOIUrl":null,"url":null,"abstract":"<div><div>This work proposes a data-driven Koopman modeling approach for nonlinear systems that takes into account the effect of noise, where the underlying noise distribution, autocorrelations, and governing differential equations are unknown. The method uses block coordinate descent to solve a <em>regularized least squares problem</em> by utilizing the extended dynamic mode decomposition (eDMD) framework for linearization and the log-likelihood characterization of the noise. Specifically, it learns a mapping to lift the nonlinear system to a higher-dimensional <em>approximated linear system</em> while also identifying the noise components in the lifted space. Furthermore, we prove theoretically that the identified model, when given new noisy data, can be used to predict the succeeding states with a guaranteed <em>upper bound on the prediction error</em>. Case studies are performed on a Van der Pol oscillator and a four-stage binary distillation column where unknown noise is present.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"204 ","pages":"Article 109366"},"PeriodicalIF":3.9000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of noisy Koopman models\",\"authors\":\"Moritz Woelk,&nbsp;Wentao Tang\",\"doi\":\"10.1016/j.compchemeng.2025.109366\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This work proposes a data-driven Koopman modeling approach for nonlinear systems that takes into account the effect of noise, where the underlying noise distribution, autocorrelations, and governing differential equations are unknown. The method uses block coordinate descent to solve a <em>regularized least squares problem</em> by utilizing the extended dynamic mode decomposition (eDMD) framework for linearization and the log-likelihood characterization of the noise. Specifically, it learns a mapping to lift the nonlinear system to a higher-dimensional <em>approximated linear system</em> while also identifying the noise components in the lifted space. Furthermore, we prove theoretically that the identified model, when given new noisy data, can be used to predict the succeeding states with a guaranteed <em>upper bound on the prediction error</em>. Case studies are performed on a Van der Pol oscillator and a four-stage binary distillation column where unknown noise is present.</div></div>\",\"PeriodicalId\":286,\"journal\":{\"name\":\"Computers & Chemical Engineering\",\"volume\":\"204 \",\"pages\":\"Article 109366\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0098135425003692\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135425003692","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

这项工作提出了一种数据驱动的非线性系统库普曼建模方法,该方法考虑了噪声的影响,其中潜在的噪声分布、自相关性和控制微分方程是未知的。该方法利用扩展动态模态分解(eDMD)框架对噪声进行线性化和对数似然表征,采用块坐标下降法求解正则化最小二乘问题。具体来说,它学习映射,将非线性系统提升到高维近似线性系统,同时识别提升空间中的噪声成分。此外,我们从理论上证明,当给定新的噪声数据时,识别的模型可以用于预测后续状态,并保证预测误差的上界。案例研究进行了范德波尔振荡器和四阶段二元精馏塔,其中未知的噪声是存在的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification of noisy Koopman models
This work proposes a data-driven Koopman modeling approach for nonlinear systems that takes into account the effect of noise, where the underlying noise distribution, autocorrelations, and governing differential equations are unknown. The method uses block coordinate descent to solve a regularized least squares problem by utilizing the extended dynamic mode decomposition (eDMD) framework for linearization and the log-likelihood characterization of the noise. Specifically, it learns a mapping to lift the nonlinear system to a higher-dimensional approximated linear system while also identifying the noise components in the lifted space. Furthermore, we prove theoretically that the identified model, when given new noisy data, can be used to predict the succeeding states with a guaranteed upper bound on the prediction error. Case studies are performed on a Van der Pol oscillator and a four-stage binary distillation column where unknown noise is present.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信