可再生能源在电力系统中渗透的电池储能系统综述:环境影响、规模方法、市场特征和政策框架

Tha'er Jaradat , Tamer Khatib
{"title":"可再生能源在电力系统中渗透的电池储能系统综述:环境影响、规模方法、市场特征和政策框架","authors":"Tha'er Jaradat ,&nbsp;Tamer Khatib","doi":"10.1016/j.fub.2025.100106","DOIUrl":null,"url":null,"abstract":"<div><div>This review establishes a comprehensive development framework for Battery Energy Storage Systems (BESS) integration into electrical power systems to enhance renewable energy penetration across four critical dimensions: environmental impact via Life Cycle Assessment (LCA), BESS optimal sizing methodologies, market features, and policy frameworks.</div><div>Key findings reveal that Lithium Iron Phosphate (LFP) batteries exhibit superior environmental performance across multiple impact categories, with manufacturing contributing 60–80 % of global warming potential for Li-ion chemistries. Multi-objective optimization either using numerical (e.g., MILP, SOCP) or AI-based (e.g., GA, PSO) methods dominate sizing research, yet fewer than 15 % of studies integrate environmental objectives. Effective deployment hinges on financial incentives (e.g., investment tax credits, performance-based rewards), streamlined regulations enabling market participation, and R&amp;D focused on sustainable materials and recycling. Critical gaps persist, including the need for standardized LCI databases for stationary applications, sizing frameworks combining techno-economic and environmental objectives validated on real distribution networks, and policies dynamically linking incentives to lifecycle sustainability. This work bridges previously disconnected research streams to guide sustainable BESS grid integration.</div></div>","PeriodicalId":100560,"journal":{"name":"Future Batteries","volume":"7 ","pages":"Article 100106"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A review of battery energy storage system for renewable energy penetration in electrical power system: Environmental impact, sizing methods, market features, and policy frameworks\",\"authors\":\"Tha'er Jaradat ,&nbsp;Tamer Khatib\",\"doi\":\"10.1016/j.fub.2025.100106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This review establishes a comprehensive development framework for Battery Energy Storage Systems (BESS) integration into electrical power systems to enhance renewable energy penetration across four critical dimensions: environmental impact via Life Cycle Assessment (LCA), BESS optimal sizing methodologies, market features, and policy frameworks.</div><div>Key findings reveal that Lithium Iron Phosphate (LFP) batteries exhibit superior environmental performance across multiple impact categories, with manufacturing contributing 60–80 % of global warming potential for Li-ion chemistries. Multi-objective optimization either using numerical (e.g., MILP, SOCP) or AI-based (e.g., GA, PSO) methods dominate sizing research, yet fewer than 15 % of studies integrate environmental objectives. Effective deployment hinges on financial incentives (e.g., investment tax credits, performance-based rewards), streamlined regulations enabling market participation, and R&amp;D focused on sustainable materials and recycling. Critical gaps persist, including the need for standardized LCI databases for stationary applications, sizing frameworks combining techno-economic and environmental objectives validated on real distribution networks, and policies dynamically linking incentives to lifecycle sustainability. This work bridges previously disconnected research streams to guide sustainable BESS grid integration.</div></div>\",\"PeriodicalId\":100560,\"journal\":{\"name\":\"Future Batteries\",\"volume\":\"7 \",\"pages\":\"Article 100106\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future Batteries\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2950264025000851\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Batteries","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950264025000851","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本综述为电池储能系统(BESS)集成到电力系统中建立了一个全面的开发框架,以提高可再生能源在四个关键方面的渗透:通过生命周期评估(LCA)的环境影响,BESS最佳规模方法,市场特征和政策框架。主要研究结果显示,磷酸铁锂(LFP)电池在多个影响类别中表现出卓越的环保性能,制造对锂离子化学物质的全球变暖潜势贡献了60 - 80% %。使用数值方法(例如,MILP, SOCP)或基于人工智能(例如,GA, PSO)的多目标优化方法主导了规模研究,但只有不到15% %的研究整合了环境目标。有效的部署取决于财政激励(例如,投资税收抵免,基于绩效的奖励),使市场参与的简化法规,以及专注于可持续材料和回收的研发。关键的差距仍然存在,包括对固定应用的标准化LCI数据库的需求,结合技术经济和环境目标的规模框架,以及将激励与生命周期可持续性动态联系起来的政策。这项工作连接了以前脱节的研究流,以指导可持续的BESS电网整合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A review of battery energy storage system for renewable energy penetration in electrical power system: Environmental impact, sizing methods, market features, and policy frameworks
This review establishes a comprehensive development framework for Battery Energy Storage Systems (BESS) integration into electrical power systems to enhance renewable energy penetration across four critical dimensions: environmental impact via Life Cycle Assessment (LCA), BESS optimal sizing methodologies, market features, and policy frameworks.
Key findings reveal that Lithium Iron Phosphate (LFP) batteries exhibit superior environmental performance across multiple impact categories, with manufacturing contributing 60–80 % of global warming potential for Li-ion chemistries. Multi-objective optimization either using numerical (e.g., MILP, SOCP) or AI-based (e.g., GA, PSO) methods dominate sizing research, yet fewer than 15 % of studies integrate environmental objectives. Effective deployment hinges on financial incentives (e.g., investment tax credits, performance-based rewards), streamlined regulations enabling market participation, and R&D focused on sustainable materials and recycling. Critical gaps persist, including the need for standardized LCI databases for stationary applications, sizing frameworks combining techno-economic and environmental objectives validated on real distribution networks, and policies dynamically linking incentives to lifecycle sustainability. This work bridges previously disconnected research streams to guide sustainable BESS grid integration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信