SMAF-net:语义引导模态转移和分层特征融合的光学sar图像配准

IF 8.6 Q1 REMOTE SENSING
Yumeng Hong , Jun Pan , Jiangong Xu , Shuying Jin , Junli Li
{"title":"SMAF-net:语义引导模态转移和分层特征融合的光学sar图像配准","authors":"Yumeng Hong ,&nbsp;Jun Pan ,&nbsp;Jiangong Xu ,&nbsp;Shuying Jin ,&nbsp;Junli Li","doi":"10.1016/j.jag.2025.104827","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate registration of optical and synthetic aperture radar (SAR) images is critical for effective fusion in remote sensing applications. To address the significant radiometric and geometric differences between these modalities, SMAF-Net, a novel network that integrates semantics-guided modality transfer and hierarchical feature fusion for optical-SAR image registration, is proposed. For modality transfer, a feature-constrained generative adversarial module (SGMT) is used to translate SAR to pseudo-optical images. By incorporating deep features from a multiscale feature learning module (MFLM) as semantic constraints, the translated images preserve structural details and reduce modality discrepancies. For feature matching, a channel attention-based hierarchical aggregation module (CA-HAM) is designed to effectively fuse multi-level features. Combined with a joint detection-description strategy, the network enables accurate keypoint detection and descriptor extraction.<!--> <!-->Experiments on optical-SAR datasets show that the proposed method achieves an average registration error of 2.26 pixels, outperforming state-of-the-art (SOTA) methods and enabling accurate registration between optical and SAR images.</div></div>","PeriodicalId":73423,"journal":{"name":"International journal of applied earth observation and geoinformation : ITC journal","volume":"143 ","pages":"Article 104827"},"PeriodicalIF":8.6000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SMAF-net: semantics-guided modality transfer and hierarchical feature fusion for optical-SAR image registration\",\"authors\":\"Yumeng Hong ,&nbsp;Jun Pan ,&nbsp;Jiangong Xu ,&nbsp;Shuying Jin ,&nbsp;Junli Li\",\"doi\":\"10.1016/j.jag.2025.104827\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Accurate registration of optical and synthetic aperture radar (SAR) images is critical for effective fusion in remote sensing applications. To address the significant radiometric and geometric differences between these modalities, SMAF-Net, a novel network that integrates semantics-guided modality transfer and hierarchical feature fusion for optical-SAR image registration, is proposed. For modality transfer, a feature-constrained generative adversarial module (SGMT) is used to translate SAR to pseudo-optical images. By incorporating deep features from a multiscale feature learning module (MFLM) as semantic constraints, the translated images preserve structural details and reduce modality discrepancies. For feature matching, a channel attention-based hierarchical aggregation module (CA-HAM) is designed to effectively fuse multi-level features. Combined with a joint detection-description strategy, the network enables accurate keypoint detection and descriptor extraction.<!--> <!-->Experiments on optical-SAR datasets show that the proposed method achieves an average registration error of 2.26 pixels, outperforming state-of-the-art (SOTA) methods and enabling accurate registration between optical and SAR images.</div></div>\",\"PeriodicalId\":73423,\"journal\":{\"name\":\"International journal of applied earth observation and geoinformation : ITC journal\",\"volume\":\"143 \",\"pages\":\"Article 104827\"},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of applied earth observation and geoinformation : ITC journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1569843225004741\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of applied earth observation and geoinformation : ITC journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569843225004741","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0

摘要

光学和合成孔径雷达(SAR)图像的精确配准是遥感应用中有效融合的关键。为了解决这些模式之间的显著辐射和几何差异,SMAF-Net是一种集成了语义引导模式转移和分层特征融合的光学sar图像配准新网络。对于模态转换,使用特征约束生成对抗模块(SGMT)将SAR图像转换为伪光学图像。通过将来自多尺度特征学习模块(MFLM)的深度特征作为语义约束,翻译后的图像保留了结构细节并减少了模态差异。在特征匹配方面,设计了基于信道关注的分层聚合模块(CA-HAM),有效地融合了多层次特征。结合联合检测-描述策略,该网络可以实现准确的关键点检测和描述符提取。在光学SAR数据集上的实验表明,该方法的平均配准误差为2.26像素,优于最先进的SOTA方法,可以实现光学图像与SAR图像的精确配准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SMAF-net: semantics-guided modality transfer and hierarchical feature fusion for optical-SAR image registration
Accurate registration of optical and synthetic aperture radar (SAR) images is critical for effective fusion in remote sensing applications. To address the significant radiometric and geometric differences between these modalities, SMAF-Net, a novel network that integrates semantics-guided modality transfer and hierarchical feature fusion for optical-SAR image registration, is proposed. For modality transfer, a feature-constrained generative adversarial module (SGMT) is used to translate SAR to pseudo-optical images. By incorporating deep features from a multiscale feature learning module (MFLM) as semantic constraints, the translated images preserve structural details and reduce modality discrepancies. For feature matching, a channel attention-based hierarchical aggregation module (CA-HAM) is designed to effectively fuse multi-level features. Combined with a joint detection-description strategy, the network enables accurate keypoint detection and descriptor extraction. Experiments on optical-SAR datasets show that the proposed method achieves an average registration error of 2.26 pixels, outperforming state-of-the-art (SOTA) methods and enabling accurate registration between optical and SAR images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International journal of applied earth observation and geoinformation : ITC journal
International journal of applied earth observation and geoinformation : ITC journal Global and Planetary Change, Management, Monitoring, Policy and Law, Earth-Surface Processes, Computers in Earth Sciences
CiteScore
12.00
自引率
0.00%
发文量
0
审稿时长
77 days
期刊介绍: The International Journal of Applied Earth Observation and Geoinformation publishes original papers that utilize earth observation data for natural resource and environmental inventory and management. These data primarily originate from remote sensing platforms, including satellites and aircraft, supplemented by surface and subsurface measurements. Addressing natural resources such as forests, agricultural land, soils, and water, as well as environmental concerns like biodiversity, land degradation, and hazards, the journal explores conceptual and data-driven approaches. It covers geoinformation themes like capturing, databasing, visualization, interpretation, data quality, and spatial uncertainty.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信