K. Anastasopoulou, M. G. Guarcello, J. J. Drake, B. Ritchie, M. De Becker, A. Bayo, F. Najarro, I. Negueruela, S. Sciortino, E. Flaccomio, R. Castellanos, J. F. Albacete-Colombo, M. Andersen, F. Damiani, F. Fraschetti, M. Gennaro, S. J. Gunderson, C. J. K. Larkin, J. Mackey, A. F. J. Moffat, P. Pradhan, S. Saracino, I. R. Stevens, G. Weigelt
{"title":"超巨星B[e]星Wd1-9的1Ms ACIS钱德拉观测","authors":"K. Anastasopoulou, M. G. Guarcello, J. J. Drake, B. Ritchie, M. De Becker, A. Bayo, F. Najarro, I. Negueruela, S. Sciortino, E. Flaccomio, R. Castellanos, J. F. Albacete-Colombo, M. Andersen, F. Damiani, F. Fraschetti, M. Gennaro, S. J. Gunderson, C. J. K. Larkin, J. Mackey, A. F. J. Moffat, P. Pradhan, S. Saracino, I. R. Stevens, G. Weigelt","doi":"10.1051/0004-6361/202555305","DOIUrl":null,"url":null,"abstract":"<i>Context<i/>. Supergiant B[e] (sgB[e]) stars are exceptionally rare objects, with only a select number of confirmed examples in the Milky Way. The evolutionary pathways leading to the sgB[e] phase remain largely debated, highlighting the need for additional observations. The sgB[e] star Wd1-9, located in the massive cluster Westerlund 1 (Wd1), is enshrouded in a dusty cocoon – likely the result of past eruptive activity – leaving its true nature enigmatic.<i>Aims<i/>. We present the most detailed X-ray study of Wd1-9 to date, using X-rays that pierce through its cocoon with the aim of uncovering its nature and evolutionary state.<i>Methods<i/>. We utilised 36 <i>Chandra<i/> observations of Wd1 from the ‘Extended Westerlund 1 and 2 Open Clusters Survey’ (EWOCS), plus eight archival datasets, totalling 1.1 Ms. We used this dataset to investigate long-term variability and periodicity in Wd1-9, and analysed X-ray colours and spectra over time to uncover patterns that shed light on its nature.<i>Results<i/>. Wd1-9 exhibits significant long-term X-ray variability, within which we identify a strong ∼14-day periodic signal. We interpret this as the orbital period, marking the first period determination for the system. The X-ray spectrum of Wd1-9 is thermal and hard (<i>kT<i/> ∼ 3.0 keV), resembling the spectra of bright Wolf-Rayet (WR) binaries in Wd1, while a strong Fe emission line at 6.7 keV indicates hot plasma from a colliding-wind X-ray binary.<i>Conclusions<i/>. Wd1-9, with evidence of past mass loss, circumbinary material, a hard X-ray spectrum, and a newly detected 14-day period, displays all the hallmarks of a binary – likely a WR+OB – that recently underwent early Case B mass transfer. Its sgB[e] classification is likely phenomenological, reflecting emission from the dense circumbinary material. This places Wd1-9 in a rarely observed phase, possibly revealing a newly formed WN star, bridging the gap between immediate precursors and later evolutionary stages in Wd1.","PeriodicalId":8571,"journal":{"name":"Astronomy & Astrophysics","volume":"11 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EWOCS-IV: 1Ms ACIS Chandra observation of the supergiant B[e] star Wd1-9\",\"authors\":\"K. Anastasopoulou, M. G. Guarcello, J. J. Drake, B. Ritchie, M. De Becker, A. Bayo, F. Najarro, I. Negueruela, S. Sciortino, E. Flaccomio, R. Castellanos, J. F. Albacete-Colombo, M. Andersen, F. Damiani, F. Fraschetti, M. Gennaro, S. J. Gunderson, C. J. K. Larkin, J. Mackey, A. F. J. Moffat, P. Pradhan, S. Saracino, I. R. Stevens, G. Weigelt\",\"doi\":\"10.1051/0004-6361/202555305\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<i>Context<i/>. Supergiant B[e] (sgB[e]) stars are exceptionally rare objects, with only a select number of confirmed examples in the Milky Way. The evolutionary pathways leading to the sgB[e] phase remain largely debated, highlighting the need for additional observations. The sgB[e] star Wd1-9, located in the massive cluster Westerlund 1 (Wd1), is enshrouded in a dusty cocoon – likely the result of past eruptive activity – leaving its true nature enigmatic.<i>Aims<i/>. We present the most detailed X-ray study of Wd1-9 to date, using X-rays that pierce through its cocoon with the aim of uncovering its nature and evolutionary state.<i>Methods<i/>. We utilised 36 <i>Chandra<i/> observations of Wd1 from the ‘Extended Westerlund 1 and 2 Open Clusters Survey’ (EWOCS), plus eight archival datasets, totalling 1.1 Ms. We used this dataset to investigate long-term variability and periodicity in Wd1-9, and analysed X-ray colours and spectra over time to uncover patterns that shed light on its nature.<i>Results<i/>. Wd1-9 exhibits significant long-term X-ray variability, within which we identify a strong ∼14-day periodic signal. We interpret this as the orbital period, marking the first period determination for the system. The X-ray spectrum of Wd1-9 is thermal and hard (<i>kT<i/> ∼ 3.0 keV), resembling the spectra of bright Wolf-Rayet (WR) binaries in Wd1, while a strong Fe emission line at 6.7 keV indicates hot plasma from a colliding-wind X-ray binary.<i>Conclusions<i/>. Wd1-9, with evidence of past mass loss, circumbinary material, a hard X-ray spectrum, and a newly detected 14-day period, displays all the hallmarks of a binary – likely a WR+OB – that recently underwent early Case B mass transfer. Its sgB[e] classification is likely phenomenological, reflecting emission from the dense circumbinary material. This places Wd1-9 in a rarely observed phase, possibly revealing a newly formed WN star, bridging the gap between immediate precursors and later evolutionary stages in Wd1.\",\"PeriodicalId\":8571,\"journal\":{\"name\":\"Astronomy & Astrophysics\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astronomy & Astrophysics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1051/0004-6361/202555305\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy & Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1051/0004-6361/202555305","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
EWOCS-IV: 1Ms ACIS Chandra observation of the supergiant B[e] star Wd1-9
Context. Supergiant B[e] (sgB[e]) stars are exceptionally rare objects, with only a select number of confirmed examples in the Milky Way. The evolutionary pathways leading to the sgB[e] phase remain largely debated, highlighting the need for additional observations. The sgB[e] star Wd1-9, located in the massive cluster Westerlund 1 (Wd1), is enshrouded in a dusty cocoon – likely the result of past eruptive activity – leaving its true nature enigmatic.Aims. We present the most detailed X-ray study of Wd1-9 to date, using X-rays that pierce through its cocoon with the aim of uncovering its nature and evolutionary state.Methods. We utilised 36 Chandra observations of Wd1 from the ‘Extended Westerlund 1 and 2 Open Clusters Survey’ (EWOCS), plus eight archival datasets, totalling 1.1 Ms. We used this dataset to investigate long-term variability and periodicity in Wd1-9, and analysed X-ray colours and spectra over time to uncover patterns that shed light on its nature.Results. Wd1-9 exhibits significant long-term X-ray variability, within which we identify a strong ∼14-day periodic signal. We interpret this as the orbital period, marking the first period determination for the system. The X-ray spectrum of Wd1-9 is thermal and hard (kT ∼ 3.0 keV), resembling the spectra of bright Wolf-Rayet (WR) binaries in Wd1, while a strong Fe emission line at 6.7 keV indicates hot plasma from a colliding-wind X-ray binary.Conclusions. Wd1-9, with evidence of past mass loss, circumbinary material, a hard X-ray spectrum, and a newly detected 14-day period, displays all the hallmarks of a binary – likely a WR+OB – that recently underwent early Case B mass transfer. Its sgB[e] classification is likely phenomenological, reflecting emission from the dense circumbinary material. This places Wd1-9 in a rarely observed phase, possibly revealing a newly formed WN star, bridging the gap between immediate precursors and later evolutionary stages in Wd1.
期刊介绍:
Astronomy & Astrophysics is an international Journal that publishes papers on all aspects of astronomy and astrophysics (theoretical, observational, and instrumental) independently of the techniques used to obtain the results.