{"title":"通过模拟内存计算克服大型语言模型中的计算瓶颈。","authors":"Yudeng Lin, Jianshi Tang","doi":"10.1038/s43588-025-00860-3","DOIUrl":null,"url":null,"abstract":"A recent study demonstrates the potential of using in-memory computing architecture for implementing large language models for an improved computational efficiency in both time and energy while maintaining a high accuracy.","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":"5 9","pages":"711-712"},"PeriodicalIF":18.3000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Overcoming computational bottlenecks in large language models through analog in-memory computing\",\"authors\":\"Yudeng Lin, Jianshi Tang\",\"doi\":\"10.1038/s43588-025-00860-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A recent study demonstrates the potential of using in-memory computing architecture for implementing large language models for an improved computational efficiency in both time and energy while maintaining a high accuracy.\",\"PeriodicalId\":74246,\"journal\":{\"name\":\"Nature computational science\",\"volume\":\"5 9\",\"pages\":\"711-712\"},\"PeriodicalIF\":18.3000,\"publicationDate\":\"2025-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature computational science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s43588-025-00860-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature computational science","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43588-025-00860-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Overcoming computational bottlenecks in large language models through analog in-memory computing
A recent study demonstrates the potential of using in-memory computing architecture for implementing large language models for an improved computational efficiency in both time and energy while maintaining a high accuracy.