Marcel Helle, Ursula R Sorg, Johannes Ptok, Rachel E Thomas, Katharina Pracht, Patrick Petzsch, Alain de Bruin, Hans-Martin Jäck, Karl Köhrer, Daniel Degrandi, Klaus Pfeffer
{"title":"刚地弓形虫感染后,淋巴蛋白β受体小鼠骨髓和腹腔内的B细胞和t细胞亚群发生改变。","authors":"Marcel Helle, Ursula R Sorg, Johannes Ptok, Rachel E Thomas, Katharina Pracht, Patrick Petzsch, Alain de Bruin, Hans-Martin Jäck, Karl Köhrer, Daniel Degrandi, Klaus Pfeffer","doi":"10.1128/iai.00408-25","DOIUrl":null,"url":null,"abstract":"<p><p>Lymphotoxin β receptor (LTβR/TNFRSF3) signaling plays a crucial role in immune defense. Notably, LTβR-deficient (LTβR<sup>-/-</sup>) mice exhibit severe defects in innate and adaptive immunity against various pathogens and succumb to <i>Toxoplasma gondii</i> infection. Here, we investigated the bone marrow (BM) and peritoneal cavity (PerC) compartments of LTβR<sup>-/-</sup> mice during <i>T. gondii</i> infection, demonstrating perturbed B-cell and T-cell subpopulations in the absence of LTβR signaling. <i>T. gondii</i> infection disrupted BM lymphopoiesis, depleting early and mature B cells in WT mice, whereas mature B cells remained present in LTβR<sup>-/-</sup> BM. LTβR<sup>-/-</sup> BM also exhibited reduced MHCII<sup>+</sup> monocytes and a plasma cell compartment skewed toward IgM<sup>+</sup> rather than IgA<sup>+</sup> cells. In addition, BM Tcell subsets were altered, exhibiting decreased double-negative (CD4<sup>-</sup>/CD8<sup>-</sup>) and increased CD4<sup>+</sup> and CD8<sup>+</sup> T-cell frequencies. Analysis of the BM transcriptome revealed diminished interferon responses but an upregulated TNFα-NF-κB signaling signature in uninfected and infected LTβR<sup>-/-</sup> mice, potentially compensating for the absence of LTβR signaling. LTβR<sup>-/-</sup> mice displayed an altered B-1a to B-1b ratio and a predominant presence of neutrophils in the PerC. In summary, we identified novel immunological alterations in the BM and PerC compartments of LTβR<sup>-/-</sup> mice, which suggest new roles for LTβR signaling in B- and T-cell homeostasis, migration, and pathogen defense.</p>","PeriodicalId":13541,"journal":{"name":"Infection and Immunity","volume":" ","pages":"e0040825"},"PeriodicalIF":2.8000,"publicationDate":"2025-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12519803/pdf/","citationCount":"0","resultStr":"{\"title\":\"Lymphotoxin beta receptor<sup>-/-</sup> mice display altered B- and T-cell subpopulations in the bone marrow and peritoneal cavity after <i>Toxoplasma gondii</i> infection.\",\"authors\":\"Marcel Helle, Ursula R Sorg, Johannes Ptok, Rachel E Thomas, Katharina Pracht, Patrick Petzsch, Alain de Bruin, Hans-Martin Jäck, Karl Köhrer, Daniel Degrandi, Klaus Pfeffer\",\"doi\":\"10.1128/iai.00408-25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lymphotoxin β receptor (LTβR/TNFRSF3) signaling plays a crucial role in immune defense. Notably, LTβR-deficient (LTβR<sup>-/-</sup>) mice exhibit severe defects in innate and adaptive immunity against various pathogens and succumb to <i>Toxoplasma gondii</i> infection. Here, we investigated the bone marrow (BM) and peritoneal cavity (PerC) compartments of LTβR<sup>-/-</sup> mice during <i>T. gondii</i> infection, demonstrating perturbed B-cell and T-cell subpopulations in the absence of LTβR signaling. <i>T. gondii</i> infection disrupted BM lymphopoiesis, depleting early and mature B cells in WT mice, whereas mature B cells remained present in LTβR<sup>-/-</sup> BM. LTβR<sup>-/-</sup> BM also exhibited reduced MHCII<sup>+</sup> monocytes and a plasma cell compartment skewed toward IgM<sup>+</sup> rather than IgA<sup>+</sup> cells. In addition, BM Tcell subsets were altered, exhibiting decreased double-negative (CD4<sup>-</sup>/CD8<sup>-</sup>) and increased CD4<sup>+</sup> and CD8<sup>+</sup> T-cell frequencies. Analysis of the BM transcriptome revealed diminished interferon responses but an upregulated TNFα-NF-κB signaling signature in uninfected and infected LTβR<sup>-/-</sup> mice, potentially compensating for the absence of LTβR signaling. LTβR<sup>-/-</sup> mice displayed an altered B-1a to B-1b ratio and a predominant presence of neutrophils in the PerC. In summary, we identified novel immunological alterations in the BM and PerC compartments of LTβR<sup>-/-</sup> mice, which suggest new roles for LTβR signaling in B- and T-cell homeostasis, migration, and pathogen defense.</p>\",\"PeriodicalId\":13541,\"journal\":{\"name\":\"Infection and Immunity\",\"volume\":\" \",\"pages\":\"e0040825\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12519803/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Infection and Immunity\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1128/iai.00408-25\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/9/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infection and Immunity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1128/iai.00408-25","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/9 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Lymphotoxin beta receptor-/- mice display altered B- and T-cell subpopulations in the bone marrow and peritoneal cavity after Toxoplasma gondii infection.
Lymphotoxin β receptor (LTβR/TNFRSF3) signaling plays a crucial role in immune defense. Notably, LTβR-deficient (LTβR-/-) mice exhibit severe defects in innate and adaptive immunity against various pathogens and succumb to Toxoplasma gondii infection. Here, we investigated the bone marrow (BM) and peritoneal cavity (PerC) compartments of LTβR-/- mice during T. gondii infection, demonstrating perturbed B-cell and T-cell subpopulations in the absence of LTβR signaling. T. gondii infection disrupted BM lymphopoiesis, depleting early and mature B cells in WT mice, whereas mature B cells remained present in LTβR-/- BM. LTβR-/- BM also exhibited reduced MHCII+ monocytes and a plasma cell compartment skewed toward IgM+ rather than IgA+ cells. In addition, BM Tcell subsets were altered, exhibiting decreased double-negative (CD4-/CD8-) and increased CD4+ and CD8+ T-cell frequencies. Analysis of the BM transcriptome revealed diminished interferon responses but an upregulated TNFα-NF-κB signaling signature in uninfected and infected LTβR-/- mice, potentially compensating for the absence of LTβR signaling. LTβR-/- mice displayed an altered B-1a to B-1b ratio and a predominant presence of neutrophils in the PerC. In summary, we identified novel immunological alterations in the BM and PerC compartments of LTβR-/- mice, which suggest new roles for LTβR signaling in B- and T-cell homeostasis, migration, and pathogen defense.
期刊介绍:
Infection and Immunity (IAI) provides new insights into the interactions between bacterial, fungal and parasitic pathogens and their hosts. Specific areas of interest include mechanisms of molecular pathogenesis, virulence factors, cellular microbiology, experimental models of infection, host resistance or susceptibility, and the generation of innate and adaptive immune responses. IAI also welcomes studies of the microbiome relating to host-pathogen interactions.