{"title":"一种改进的非光滑坐标变换用于分析具有随机激励的双边振动碰撞系统。","authors":"Meng Su, Wenting Zhang, Li Liu, Wei Xu","doi":"10.1063/5.0266439","DOIUrl":null,"url":null,"abstract":"<p><p>Vibro-impact systems exhibit non-smooth characteristics and pose significant challenges for analysis. Non-smooth coordinate transformations are widely recognized for their ability to convert vibro-impact systems into systems with continuous trajectories, thereby enabling the application of some classical methods. This paper introduces an improved non-smooth coordinate transformation method [Su et al., Chaos 32, 043118 (2022)], developed from the Zhuravlev and Ivanov transformations, and extends it to the analysis of bilateral vibro-impact systems with stochastic excitations. We provide a detailed derivation of the transformation, which allows the conversion of the original non-smooth system into a form with continuous and periodic trajectories. According to two typical examples, the effectiveness of the proposed method is validated by solving the corresponding Fokker-Planck equation and comparing the stationary probability density functions obtained from this approach with results from Monte-Carlo simulations. The good agreement demonstrates that the improved transformation method, which can be directly applied to vibro-impact systems with asymmetric bilateral barriers accompanied with distinct restitution coefficients or a unilateral barrier, offers an effective tool for studying stochastic responses and bifurcations of such complex systems.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 9","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An improved non-smooth coordinate transformation for analyzing bilateral vibro-impact systems with stochastic excitations.\",\"authors\":\"Meng Su, Wenting Zhang, Li Liu, Wei Xu\",\"doi\":\"10.1063/5.0266439\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Vibro-impact systems exhibit non-smooth characteristics and pose significant challenges for analysis. Non-smooth coordinate transformations are widely recognized for their ability to convert vibro-impact systems into systems with continuous trajectories, thereby enabling the application of some classical methods. This paper introduces an improved non-smooth coordinate transformation method [Su et al., Chaos 32, 043118 (2022)], developed from the Zhuravlev and Ivanov transformations, and extends it to the analysis of bilateral vibro-impact systems with stochastic excitations. We provide a detailed derivation of the transformation, which allows the conversion of the original non-smooth system into a form with continuous and periodic trajectories. According to two typical examples, the effectiveness of the proposed method is validated by solving the corresponding Fokker-Planck equation and comparing the stationary probability density functions obtained from this approach with results from Monte-Carlo simulations. The good agreement demonstrates that the improved transformation method, which can be directly applied to vibro-impact systems with asymmetric bilateral barriers accompanied with distinct restitution coefficients or a unilateral barrier, offers an effective tool for studying stochastic responses and bifurcations of such complex systems.</p>\",\"PeriodicalId\":9974,\"journal\":{\"name\":\"Chaos\",\"volume\":\"35 9\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0266439\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0266439","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
振动冲击系统具有非光滑特性,给分析带来了重大挑战。非光滑坐标变换因其将振动冲击系统转换为具有连续轨迹的系统的能力而得到广泛认可,从而使一些经典方法得以应用。本文介绍了一种改进的非光滑坐标变换方法[Su et al., Chaos 32, 043118(2022)],该方法由Zhuravlev和Ivanov变换发展而来,并将其推广到具有随机激励的双边振动碰撞系统的分析中。我们提供了转换的详细推导,它允许将原始非光滑系统转换为具有连续和周期轨迹的形式。通过两个典型算例,通过求解相应的Fokker-Planck方程,并将该方法得到的平稳概率密度函数与蒙特卡罗模拟结果进行比较,验证了该方法的有效性。结果表明,改进的变换方法可直接应用于具有不同恢复系数的非对称双侧障碍或单侧障碍的振动冲击系统,为研究这类复杂系统的随机响应和分岔提供了有效的工具。
An improved non-smooth coordinate transformation for analyzing bilateral vibro-impact systems with stochastic excitations.
Vibro-impact systems exhibit non-smooth characteristics and pose significant challenges for analysis. Non-smooth coordinate transformations are widely recognized for their ability to convert vibro-impact systems into systems with continuous trajectories, thereby enabling the application of some classical methods. This paper introduces an improved non-smooth coordinate transformation method [Su et al., Chaos 32, 043118 (2022)], developed from the Zhuravlev and Ivanov transformations, and extends it to the analysis of bilateral vibro-impact systems with stochastic excitations. We provide a detailed derivation of the transformation, which allows the conversion of the original non-smooth system into a form with continuous and periodic trajectories. According to two typical examples, the effectiveness of the proposed method is validated by solving the corresponding Fokker-Planck equation and comparing the stationary probability density functions obtained from this approach with results from Monte-Carlo simulations. The good agreement demonstrates that the improved transformation method, which can be directly applied to vibro-impact systems with asymmetric bilateral barriers accompanied with distinct restitution coefficients or a unilateral barrier, offers an effective tool for studying stochastic responses and bifurcations of such complex systems.
期刊介绍:
Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.