基于全和部分多组学数据集的多层矩阵分解癌症亚型。

IF 7.7 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Yingxuan Ren, Fengtao Ren, Bo Yang
{"title":"基于全和部分多组学数据集的多层矩阵分解癌症亚型。","authors":"Yingxuan Ren, Fengtao Ren, Bo Yang","doi":"10.1093/bib/bbaf448","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer, with its inherent heterogeneity, is commonly categorized into distinct subtypes based on unique traits, cellular origins, and molecular markers specific to each type. However, current studies primarily rely on complete multi-omics datasets for predicting cancer subtypes, often overlooking predictive performance in cases where some omics data may be missing and neglecting implicit relationships across multiple layers of omics data integration. This paper introduces Multi-Layer Matrix Factorization (MLMF), a novel approach for cancer subtyping that employs multi-omics data clustering. MLMF initially processes multi-omics feature matrices by performing multi-layer linear or nonlinear factorization, decomposing the original data into latent feature representations unique to each omics type. These latent representations are subsequently fused into a consensus form, on which spectral clustering is performed to determine subtypes. Additionally, MLMF incorporates a class indicator matrix to handle missing omics data, creating a unified framework that can manage both complete and incomplete multi-omics data. Extensive experiments conducted on 12 multi-omics cancer datasets, both complete and with missing values, demonstrate that MLMF achieves results that are comparable to or surpass the performance of several state-of-the-art approaches. MLMF is open source and available at (https://github.com/renyingxuan/MLMF.git).</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 5","pages":""},"PeriodicalIF":7.7000,"publicationDate":"2025-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12418959/pdf/","citationCount":"0","resultStr":"{\"title\":\"Multi-layer matrix factorization for cancer subtyping using full and partial multi-omics dataset.\",\"authors\":\"Yingxuan Ren, Fengtao Ren, Bo Yang\",\"doi\":\"10.1093/bib/bbaf448\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cancer, with its inherent heterogeneity, is commonly categorized into distinct subtypes based on unique traits, cellular origins, and molecular markers specific to each type. However, current studies primarily rely on complete multi-omics datasets for predicting cancer subtypes, often overlooking predictive performance in cases where some omics data may be missing and neglecting implicit relationships across multiple layers of omics data integration. This paper introduces Multi-Layer Matrix Factorization (MLMF), a novel approach for cancer subtyping that employs multi-omics data clustering. MLMF initially processes multi-omics feature matrices by performing multi-layer linear or nonlinear factorization, decomposing the original data into latent feature representations unique to each omics type. These latent representations are subsequently fused into a consensus form, on which spectral clustering is performed to determine subtypes. Additionally, MLMF incorporates a class indicator matrix to handle missing omics data, creating a unified framework that can manage both complete and incomplete multi-omics data. Extensive experiments conducted on 12 multi-omics cancer datasets, both complete and with missing values, demonstrate that MLMF achieves results that are comparable to or surpass the performance of several state-of-the-art approaches. MLMF is open source and available at (https://github.com/renyingxuan/MLMF.git).</p>\",\"PeriodicalId\":9209,\"journal\":{\"name\":\"Briefings in bioinformatics\",\"volume\":\"26 5\",\"pages\":\"\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2025-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12418959/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bib/bbaf448\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf448","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

癌症具有固有的异质性,通常根据独特的特征、细胞起源和每种类型特有的分子标记物,将其分为不同的亚型。然而,目前的研究主要依赖于完整的多组学数据集来预测癌症亚型,在一些组学数据可能缺失的情况下,往往忽略了预测性能,并且忽略了组学数据集成多层之间的隐含关系。本文介绍了一种利用多组学数据聚类的癌症亚型分型新方法——多层矩阵分解(MLMF)。MLMF最初通过执行多层线性或非线性因子分解来处理多组学特征矩阵,将原始数据分解为每个组学类型独有的潜在特征表示。这些潜在的表征随后被融合成一个共识形式,在此基础上进行光谱聚类以确定亚型。此外,MLMF结合了一个类指标矩阵来处理缺失的组学数据,创建了一个统一的框架,可以管理完整和不完整的多组学数据。在12个完整的和缺失值的多组学癌症数据集上进行的广泛实验表明,MLMF实现的结果与几种最先进的方法的性能相当或超过。MLMF是开源的,可以在(https://github.com/renyingxuan/MLMF.git)上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Multi-layer matrix factorization for cancer subtyping using full and partial multi-omics dataset.

Multi-layer matrix factorization for cancer subtyping using full and partial multi-omics dataset.

Multi-layer matrix factorization for cancer subtyping using full and partial multi-omics dataset.

Multi-layer matrix factorization for cancer subtyping using full and partial multi-omics dataset.

Cancer, with its inherent heterogeneity, is commonly categorized into distinct subtypes based on unique traits, cellular origins, and molecular markers specific to each type. However, current studies primarily rely on complete multi-omics datasets for predicting cancer subtypes, often overlooking predictive performance in cases where some omics data may be missing and neglecting implicit relationships across multiple layers of omics data integration. This paper introduces Multi-Layer Matrix Factorization (MLMF), a novel approach for cancer subtyping that employs multi-omics data clustering. MLMF initially processes multi-omics feature matrices by performing multi-layer linear or nonlinear factorization, decomposing the original data into latent feature representations unique to each omics type. These latent representations are subsequently fused into a consensus form, on which spectral clustering is performed to determine subtypes. Additionally, MLMF incorporates a class indicator matrix to handle missing omics data, creating a unified framework that can manage both complete and incomplete multi-omics data. Extensive experiments conducted on 12 multi-omics cancer datasets, both complete and with missing values, demonstrate that MLMF achieves results that are comparable to or surpass the performance of several state-of-the-art approaches. MLMF is open source and available at (https://github.com/renyingxuan/MLMF.git).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Briefings in bioinformatics
Briefings in bioinformatics 生物-生化研究方法
CiteScore
13.20
自引率
13.70%
发文量
549
审稿时长
6 months
期刊介绍: Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data. The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信