q差分二维Toda格,q差分正弦戈登方程及其解的分类

IF 1.4 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Anhui Yan, Chunxia Li
{"title":"q差分二维Toda格,q差分正弦戈登方程及其解的分类","authors":"Anhui Yan,&nbsp;Chunxia Li","doi":"10.1007/s11005-025-01990-5","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we have developed Cauchy matrix approach to construct the <i>q</i>-difference two-dimensional Toda lattice (<i>q</i>-2DTL) and <i>q</i>-difference sine-Gordon (<i>q</i>-sG) equation, and explore their integrability such as Lax pair and explicit solutions. By leveraging specific dispersion relations pertaining to <i>r</i> and <i>s</i> of the Sylvester equation <span>\\(KM + ML = rs^\\top \\)</span>, we establish the <i>q</i>-2DTL and derive its Lax pair. We also clarify the connection of the <span>\\(\\tau \\)</span> function of the <i>q</i>-2DTL with Cauchy matrix approach. Besides, explicit solutions of the <i>q</i>-2DTL are formulated and classified by comprehensively investigating its underlying systems of linear <i>q</i>-difference equations. As typical examples, the dynamical behaviors of both soliton solutions and a double-pole solution are simulated numerically. Under the assumption <span>\\(K = L\\)</span>, we demonstrate how to reduce the <i>q</i>-sG equation from the <i>q</i>-2DTL both by Cauchy matrix approach and by 2-periodic reductions. Besides, the bilinear representation for the <i>q</i>-sG equation is reported for the first time. Furthermore, rich solutions such as kink solutions and breathers are explicitly presented and graphically illustrated for the <i>q</i>-sG equation.</p></div>","PeriodicalId":685,"journal":{"name":"Letters in Mathematical Physics","volume":"115 5","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The q-difference 2D Toda lattice, the q-difference sine-Gordon equation and classifications of solutions\",\"authors\":\"Anhui Yan,&nbsp;Chunxia Li\",\"doi\":\"10.1007/s11005-025-01990-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we have developed Cauchy matrix approach to construct the <i>q</i>-difference two-dimensional Toda lattice (<i>q</i>-2DTL) and <i>q</i>-difference sine-Gordon (<i>q</i>-sG) equation, and explore their integrability such as Lax pair and explicit solutions. By leveraging specific dispersion relations pertaining to <i>r</i> and <i>s</i> of the Sylvester equation <span>\\\\(KM + ML = rs^\\\\top \\\\)</span>, we establish the <i>q</i>-2DTL and derive its Lax pair. We also clarify the connection of the <span>\\\\(\\\\tau \\\\)</span> function of the <i>q</i>-2DTL with Cauchy matrix approach. Besides, explicit solutions of the <i>q</i>-2DTL are formulated and classified by comprehensively investigating its underlying systems of linear <i>q</i>-difference equations. As typical examples, the dynamical behaviors of both soliton solutions and a double-pole solution are simulated numerically. Under the assumption <span>\\\\(K = L\\\\)</span>, we demonstrate how to reduce the <i>q</i>-sG equation from the <i>q</i>-2DTL both by Cauchy matrix approach and by 2-periodic reductions. Besides, the bilinear representation for the <i>q</i>-sG equation is reported for the first time. Furthermore, rich solutions such as kink solutions and breathers are explicitly presented and graphically illustrated for the <i>q</i>-sG equation.</p></div>\",\"PeriodicalId\":685,\"journal\":{\"name\":\"Letters in Mathematical Physics\",\"volume\":\"115 5\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Letters in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11005-025-01990-5\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11005-025-01990-5","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文利用柯西矩阵方法构造了q差分二维Toda格(q-2DTL)和q差分正弦-戈登(q-sG)方程,并探讨了它们的可积性,如Lax对和显式解。利用Sylvester方程\(KM + ML = rs^\top \)中r和s的特定色散关系,我们建立了q-2DTL并推导了它的Lax对。我们还阐明了q-2DTL的\(\tau \)函数与柯西矩阵方法的联系。此外,通过对q-2DTL的线性q差分方程的基础系统的全面研究,给出了q-2DTL的显式解并进行了分类。作为典型的例子,对孤子解和双极解的动力学行为进行了数值模拟。在\(K = L\)假设下,我们演示了如何用柯西矩阵法和2周期约简方法从q-2DTL中约简q-sG方程。此外,本文还首次报道了q-sG方程的双线性表示。此外,还明确地给出了q-sG方程的丰富解,如扭结解和呼吸解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The q-difference 2D Toda lattice, the q-difference sine-Gordon equation and classifications of solutions

In this paper, we have developed Cauchy matrix approach to construct the q-difference two-dimensional Toda lattice (q-2DTL) and q-difference sine-Gordon (q-sG) equation, and explore their integrability such as Lax pair and explicit solutions. By leveraging specific dispersion relations pertaining to r and s of the Sylvester equation \(KM + ML = rs^\top \), we establish the q-2DTL and derive its Lax pair. We also clarify the connection of the \(\tau \) function of the q-2DTL with Cauchy matrix approach. Besides, explicit solutions of the q-2DTL are formulated and classified by comprehensively investigating its underlying systems of linear q-difference equations. As typical examples, the dynamical behaviors of both soliton solutions and a double-pole solution are simulated numerically. Under the assumption \(K = L\), we demonstrate how to reduce the q-sG equation from the q-2DTL both by Cauchy matrix approach and by 2-periodic reductions. Besides, the bilinear representation for the q-sG equation is reported for the first time. Furthermore, rich solutions such as kink solutions and breathers are explicitly presented and graphically illustrated for the q-sG equation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Letters in Mathematical Physics
Letters in Mathematical Physics 物理-物理:数学物理
CiteScore
2.40
自引率
8.30%
发文量
111
审稿时长
3 months
期刊介绍: The aim of Letters in Mathematical Physics is to attract the community''s attention on important and original developments in the area of mathematical physics and contemporary theoretical physics. The journal publishes letters and longer research articles, occasionally also articles containing topical reviews. We are committed to both fast publication and careful refereeing. In addition, the journal offers important contributions to modern mathematics in fields which have a potential physical application, and important developments in theoretical physics which have potential mathematical impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信