{"title":"基于先验知识驱动的rgb -事件跟踪混合提示学习","authors":"Mianzhao Wang;Fan Shi;Xu Cheng;Shengyong Chen","doi":"10.1109/TCSVT.2025.3559614","DOIUrl":null,"url":null,"abstract":"Event data can asynchronously capture variations in light intensity, thereby implicitly providing valuable complementary cues for RGB-Event tracking. Existing methods typically employ a direct interaction mechanism to fuse RGB and event data. However, due to differences in imaging mechanisms, the representational disparity between these two data types is not fixed, which can lead to tracking failures in certain challenging scenarios. To address this issue, we propose a novel prior knowledge-driven hybrid prompter learning framework for RGB-Event tracking. Specifically, we develop a frame-event hybrid prompter that leverages prior tracking knowledge from the foundation model as intermediate modal support to mitigate the heterogeneity between RGB and event data. By leveraging its rich prior tracking knowledge, the intermediate modal reduces the gap between the dense RGB and sparse event data interactions, effectively guiding complementary learning between modalities. Meanwhile, to mitigate the internal learning disparities between the lightweight hybrid prompter and the deep transformer model, we introduce a pseudo-prompt learning strategy that lies between full fine-tuning and partial fine-tuning. This strategy adopts a divide-and-conquer approach to assign different learning rates to modules with distinct functions, effectively reducing the dominant influence of RGB information in complex scenarios. Extensive experiments conducted on two public RGB-Event tracking datasets show that the proposed HPL outperforms state-of-the-art tracking methods, achieving exceptional performance.","PeriodicalId":13082,"journal":{"name":"IEEE Transactions on Circuits and Systems for Video Technology","volume":"35 9","pages":"8679-8691"},"PeriodicalIF":11.1000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prior Knowledge-Driven Hybrid Prompter Learning for RGB-Event Tracking\",\"authors\":\"Mianzhao Wang;Fan Shi;Xu Cheng;Shengyong Chen\",\"doi\":\"10.1109/TCSVT.2025.3559614\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Event data can asynchronously capture variations in light intensity, thereby implicitly providing valuable complementary cues for RGB-Event tracking. Existing methods typically employ a direct interaction mechanism to fuse RGB and event data. However, due to differences in imaging mechanisms, the representational disparity between these two data types is not fixed, which can lead to tracking failures in certain challenging scenarios. To address this issue, we propose a novel prior knowledge-driven hybrid prompter learning framework for RGB-Event tracking. Specifically, we develop a frame-event hybrid prompter that leverages prior tracking knowledge from the foundation model as intermediate modal support to mitigate the heterogeneity between RGB and event data. By leveraging its rich prior tracking knowledge, the intermediate modal reduces the gap between the dense RGB and sparse event data interactions, effectively guiding complementary learning between modalities. Meanwhile, to mitigate the internal learning disparities between the lightweight hybrid prompter and the deep transformer model, we introduce a pseudo-prompt learning strategy that lies between full fine-tuning and partial fine-tuning. This strategy adopts a divide-and-conquer approach to assign different learning rates to modules with distinct functions, effectively reducing the dominant influence of RGB information in complex scenarios. Extensive experiments conducted on two public RGB-Event tracking datasets show that the proposed HPL outperforms state-of-the-art tracking methods, achieving exceptional performance.\",\"PeriodicalId\":13082,\"journal\":{\"name\":\"IEEE Transactions on Circuits and Systems for Video Technology\",\"volume\":\"35 9\",\"pages\":\"8679-8691\"},\"PeriodicalIF\":11.1000,\"publicationDate\":\"2025-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Circuits and Systems for Video Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10962221/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Circuits and Systems for Video Technology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10962221/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Prior Knowledge-Driven Hybrid Prompter Learning for RGB-Event Tracking
Event data can asynchronously capture variations in light intensity, thereby implicitly providing valuable complementary cues for RGB-Event tracking. Existing methods typically employ a direct interaction mechanism to fuse RGB and event data. However, due to differences in imaging mechanisms, the representational disparity between these two data types is not fixed, which can lead to tracking failures in certain challenging scenarios. To address this issue, we propose a novel prior knowledge-driven hybrid prompter learning framework for RGB-Event tracking. Specifically, we develop a frame-event hybrid prompter that leverages prior tracking knowledge from the foundation model as intermediate modal support to mitigate the heterogeneity between RGB and event data. By leveraging its rich prior tracking knowledge, the intermediate modal reduces the gap between the dense RGB and sparse event data interactions, effectively guiding complementary learning between modalities. Meanwhile, to mitigate the internal learning disparities between the lightweight hybrid prompter and the deep transformer model, we introduce a pseudo-prompt learning strategy that lies between full fine-tuning and partial fine-tuning. This strategy adopts a divide-and-conquer approach to assign different learning rates to modules with distinct functions, effectively reducing the dominant influence of RGB information in complex scenarios. Extensive experiments conducted on two public RGB-Event tracking datasets show that the proposed HPL outperforms state-of-the-art tracking methods, achieving exceptional performance.
期刊介绍:
The IEEE Transactions on Circuits and Systems for Video Technology (TCSVT) is dedicated to covering all aspects of video technologies from a circuits and systems perspective. We encourage submissions of general, theoretical, and application-oriented papers related to image and video acquisition, representation, presentation, and display. Additionally, we welcome contributions in areas such as processing, filtering, and transforms; analysis and synthesis; learning and understanding; compression, transmission, communication, and networking; as well as storage, retrieval, indexing, and search. Furthermore, papers focusing on hardware and software design and implementation are highly valued. Join us in advancing the field of video technology through innovative research and insights.