学习语言提示视觉语言跟踪

IF 11.1 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Chengao Zong;Jie Zhao;Xin Chen;Huchuan Lu;Dong Wang
{"title":"学习语言提示视觉语言跟踪","authors":"Chengao Zong;Jie Zhao;Xin Chen;Huchuan Lu;Dong Wang","doi":"10.1109/TCSVT.2025.3557053","DOIUrl":null,"url":null,"abstract":"Vision-language object tracking integrates advanced linguistic information, enhancing its robustness and accuracy in complex scenarios. Nevertheless, current methods are constrained by a lack of sufficient vision-language data, making it challenging for the model to learn generalized knowledge. To alleviate this issue, we propose a new prompt-based framework for vision-language tracking, named ProVLT. This framework casts language information as a prompt for pretrained vision-based tracking models, thereby leveraging the knowledge from extensive tracking data. Experiments demonstrate that ProVLT achieves competitive performance while training only a fraction of parameters (approximately 29% of modal parameters). For instance, ProVLT achieves competitive performance, attaining AUC of 59.8% on TNL2K benchmark. Furthermore, we augment five mainstream vision-only tracking benchmarks with language annotations, and find that the inclusion of linguistic information consistently improves tracking performance. On these benchmarks, the linguistic information improves the performance by an average of 2.9% compared with the vision-based tracker. We will release the code, models, and benchmarks for the community.","PeriodicalId":13082,"journal":{"name":"IEEE Transactions on Circuits and Systems for Video Technology","volume":"35 9","pages":"9287-9299"},"PeriodicalIF":11.1000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning Language Prompt for Vision-Language Tracking\",\"authors\":\"Chengao Zong;Jie Zhao;Xin Chen;Huchuan Lu;Dong Wang\",\"doi\":\"10.1109/TCSVT.2025.3557053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vision-language object tracking integrates advanced linguistic information, enhancing its robustness and accuracy in complex scenarios. Nevertheless, current methods are constrained by a lack of sufficient vision-language data, making it challenging for the model to learn generalized knowledge. To alleviate this issue, we propose a new prompt-based framework for vision-language tracking, named ProVLT. This framework casts language information as a prompt for pretrained vision-based tracking models, thereby leveraging the knowledge from extensive tracking data. Experiments demonstrate that ProVLT achieves competitive performance while training only a fraction of parameters (approximately 29% of modal parameters). For instance, ProVLT achieves competitive performance, attaining AUC of 59.8% on TNL2K benchmark. Furthermore, we augment five mainstream vision-only tracking benchmarks with language annotations, and find that the inclusion of linguistic information consistently improves tracking performance. On these benchmarks, the linguistic information improves the performance by an average of 2.9% compared with the vision-based tracker. We will release the code, models, and benchmarks for the community.\",\"PeriodicalId\":13082,\"journal\":{\"name\":\"IEEE Transactions on Circuits and Systems for Video Technology\",\"volume\":\"35 9\",\"pages\":\"9287-9299\"},\"PeriodicalIF\":11.1000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Circuits and Systems for Video Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10947500/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Circuits and Systems for Video Technology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10947500/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

视觉语言目标跟踪集成了先进的语言信息,增强了其在复杂场景下的鲁棒性和准确性。然而,目前的方法受到缺乏足够的视觉语言数据的限制,使得模型学习广义知识具有挑战性。为了解决这个问题,我们提出了一个新的基于提示的视觉语言跟踪框架,命名为ProVLT。该框架将语言信息作为预训练的基于视觉的跟踪模型的提示,从而利用来自广泛跟踪数据的知识。实验表明,ProVLT在只训练一小部分参数(约29%的模态参数)的情况下就能实现竞争性性能。例如,ProVLT实现了具有竞争力的性能,在TNL2K基准上达到59.8%的AUC。此外,我们用语言注释增强了五种主流的仅视觉跟踪基准,并发现语言信息的包含一致地提高了跟踪性能。在这些基准测试中,与基于视觉的跟踪器相比,语言信息的性能平均提高了2.9%。我们将为社区发布代码、模型和基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning Language Prompt for Vision-Language Tracking
Vision-language object tracking integrates advanced linguistic information, enhancing its robustness and accuracy in complex scenarios. Nevertheless, current methods are constrained by a lack of sufficient vision-language data, making it challenging for the model to learn generalized knowledge. To alleviate this issue, we propose a new prompt-based framework for vision-language tracking, named ProVLT. This framework casts language information as a prompt for pretrained vision-based tracking models, thereby leveraging the knowledge from extensive tracking data. Experiments demonstrate that ProVLT achieves competitive performance while training only a fraction of parameters (approximately 29% of modal parameters). For instance, ProVLT achieves competitive performance, attaining AUC of 59.8% on TNL2K benchmark. Furthermore, we augment five mainstream vision-only tracking benchmarks with language annotations, and find that the inclusion of linguistic information consistently improves tracking performance. On these benchmarks, the linguistic information improves the performance by an average of 2.9% compared with the vision-based tracker. We will release the code, models, and benchmarks for the community.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
13.80
自引率
27.40%
发文量
660
审稿时长
5 months
期刊介绍: The IEEE Transactions on Circuits and Systems for Video Technology (TCSVT) is dedicated to covering all aspects of video technologies from a circuits and systems perspective. We encourage submissions of general, theoretical, and application-oriented papers related to image and video acquisition, representation, presentation, and display. Additionally, we welcome contributions in areas such as processing, filtering, and transforms; analysis and synthesis; learning and understanding; compression, transmission, communication, and networking; as well as storage, retrieval, indexing, and search. Furthermore, papers focusing on hardware and software design and implementation are highly valued. Join us in advancing the field of video technology through innovative research and insights.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信