CSIPose:揭开人类姿势使用商品WiFi设备穿墙

IF 9.2 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Yangyang Gu;Jing Chen;Congrui Chen;Kun He;Ju Jia;Yebo Feng;Ruiying Du;Cong Wu
{"title":"CSIPose:揭开人类姿势使用商品WiFi设备穿墙","authors":"Yangyang Gu;Jing Chen;Congrui Chen;Kun He;Ju Jia;Yebo Feng;Ruiying Du;Cong Wu","doi":"10.1109/TMC.2025.3571469","DOIUrl":null,"url":null,"abstract":"The popularity of WiFi devices and the development of WiFi sensing have alerted people to the threat of WiFi sensing-based privacy leakage, especially the privacy of human poses. Existing work on human pose estimation is deployed in indoor scenarios or simple occlusion (e.g., a wooden screen) scenarios, which are less privacy-threatening in attack scenarios. To reveal the risk of leakage of the pose privacy to users from commodity WiFi devices, we propose CSIPose, a privacy-acquisition attack that passively estimates dynamic and static human poses in through-the-wall scenarios. We design a three-branch network based on transfer learning, auto-encoder, and self-attention mechanisms to realize the supervision of video frames over CSI frames to generate human pose skeleton frames. Notably, we design <italic>AveCSI</i>, a unified framework for preprocessing and feature extraction of CSI data corresponding to dynamic and static poses. This framework uses the average of CSI measurements to generate CSI frames to mitigate the instability of passively collected CSI data, and utilizes a self-attention mechanism to enhance key features. We evaluate the performance of CSIPose across different room layouts, subjects, devices, subject locations, and device locations. Evaluation results emphasize the generalizability of CSIPose. Finally, we discuss measures to mitigate this attack.","PeriodicalId":50389,"journal":{"name":"IEEE Transactions on Mobile Computing","volume":"24 10","pages":"10914-10926"},"PeriodicalIF":9.2000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CSIPose: Unveiling Human Poses Using Commodity WiFi Devices Through the Wall\",\"authors\":\"Yangyang Gu;Jing Chen;Congrui Chen;Kun He;Ju Jia;Yebo Feng;Ruiying Du;Cong Wu\",\"doi\":\"10.1109/TMC.2025.3571469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The popularity of WiFi devices and the development of WiFi sensing have alerted people to the threat of WiFi sensing-based privacy leakage, especially the privacy of human poses. Existing work on human pose estimation is deployed in indoor scenarios or simple occlusion (e.g., a wooden screen) scenarios, which are less privacy-threatening in attack scenarios. To reveal the risk of leakage of the pose privacy to users from commodity WiFi devices, we propose CSIPose, a privacy-acquisition attack that passively estimates dynamic and static human poses in through-the-wall scenarios. We design a three-branch network based on transfer learning, auto-encoder, and self-attention mechanisms to realize the supervision of video frames over CSI frames to generate human pose skeleton frames. Notably, we design <italic>AveCSI</i>, a unified framework for preprocessing and feature extraction of CSI data corresponding to dynamic and static poses. This framework uses the average of CSI measurements to generate CSI frames to mitigate the instability of passively collected CSI data, and utilizes a self-attention mechanism to enhance key features. We evaluate the performance of CSIPose across different room layouts, subjects, devices, subject locations, and device locations. Evaluation results emphasize the generalizability of CSIPose. Finally, we discuss measures to mitigate this attack.\",\"PeriodicalId\":50389,\"journal\":{\"name\":\"IEEE Transactions on Mobile Computing\",\"volume\":\"24 10\",\"pages\":\"10914-10926\"},\"PeriodicalIF\":9.2000,\"publicationDate\":\"2025-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Mobile Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11006977/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Mobile Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11006977/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

WiFi设备的普及和WiFi传感技术的发展,让人们意识到基于WiFi传感的隐私泄露的威胁,尤其是人体姿势的隐私。现有的人体姿势估计工作部署在室内场景或简单遮挡(例如,木屏幕)场景中,这些场景在攻击场景中对隐私的威胁较小。为了揭示商用WiFi设备向用户泄露姿势隐私的风险,我们提出了CSIPose,这是一种隐私获取攻击,可以被动地估计穿墙场景中动态和静态的人体姿势。我们设计了一个基于迁移学习、自编码器和自关注机制的三分支网络,实现了视频帧对CSI帧的监督,从而生成人体姿态骨架帧。值得注意的是,我们设计了AveCSI,这是一个统一的框架,用于动态和静态姿态对应的CSI数据的预处理和特征提取。该框架使用CSI测量的平均值来生成CSI帧,以减轻被动收集的CSI数据的不稳定性,并利用自关注机制来增强关键特征。我们评估了CSIPose在不同房间布局、受试者、设备、受试者位置和设备位置下的性能。评价结果强调了CSIPose的通用性。最后,我们讨论了减轻这种攻击的措施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CSIPose: Unveiling Human Poses Using Commodity WiFi Devices Through the Wall
The popularity of WiFi devices and the development of WiFi sensing have alerted people to the threat of WiFi sensing-based privacy leakage, especially the privacy of human poses. Existing work on human pose estimation is deployed in indoor scenarios or simple occlusion (e.g., a wooden screen) scenarios, which are less privacy-threatening in attack scenarios. To reveal the risk of leakage of the pose privacy to users from commodity WiFi devices, we propose CSIPose, a privacy-acquisition attack that passively estimates dynamic and static human poses in through-the-wall scenarios. We design a three-branch network based on transfer learning, auto-encoder, and self-attention mechanisms to realize the supervision of video frames over CSI frames to generate human pose skeleton frames. Notably, we design AveCSI, a unified framework for preprocessing and feature extraction of CSI data corresponding to dynamic and static poses. This framework uses the average of CSI measurements to generate CSI frames to mitigate the instability of passively collected CSI data, and utilizes a self-attention mechanism to enhance key features. We evaluate the performance of CSIPose across different room layouts, subjects, devices, subject locations, and device locations. Evaluation results emphasize the generalizability of CSIPose. Finally, we discuss measures to mitigate this attack.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Mobile Computing
IEEE Transactions on Mobile Computing 工程技术-电信学
CiteScore
12.90
自引率
2.50%
发文量
403
审稿时长
6.6 months
期刊介绍: IEEE Transactions on Mobile Computing addresses key technical issues related to various aspects of mobile computing. This includes (a) architectures, (b) support services, (c) algorithm/protocol design and analysis, (d) mobile environments, (e) mobile communication systems, (f) applications, and (g) emerging technologies. Topics of interest span a wide range, covering aspects like mobile networks and hosts, mobility management, multimedia, operating system support, power management, online and mobile environments, security, scalability, reliability, and emerging technologies such as wearable computers, body area networks, and wireless sensor networks. The journal serves as a comprehensive platform for advancements in mobile computing research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信