量子点电荷稳定性图中的自动电荷跃迁检测

IF 4.6
Fabian Hader;Fabian Fuchs;Sarah Fleitmann;Karin Havemann;Benedikt Scherer;Jan Vogelbruch;Lotte Geck;Stefan van Waasen
{"title":"量子点电荷稳定性图中的自动电荷跃迁检测","authors":"Fabian Hader;Fabian Fuchs;Sarah Fleitmann;Karin Havemann;Benedikt Scherer;Jan Vogelbruch;Lotte Geck;Stefan van Waasen","doi":"10.1109/TQE.2025.3596392","DOIUrl":null,"url":null,"abstract":"Gate-defined semiconductor quantum dots require an appropriate number of electrons to function as qubits. The number of electrons is usually tuned by analyzing charge stability diagrams, in which charge transitions manifest as edges. Therefore, to fully automate qubit tuning, it is necessary to recognize these edges automatically and reliably. This article investigates possible detection methods, describes their training with simulated data from the SimCATS framework, and performs a quantitative comparison with a future hardware implementation in mind. Furthermore, we investigated the quality of the optimized approaches on experimentally measured data from a GaAs and a SiGe qubit sample.","PeriodicalId":100644,"journal":{"name":"IEEE Transactions on Quantum Engineering","volume":"6 ","pages":"1-14"},"PeriodicalIF":4.6000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11119076","citationCount":"0","resultStr":"{\"title\":\"Automated Charge Transition Detection in Quantum Dot Charge Stability Diagrams\",\"authors\":\"Fabian Hader;Fabian Fuchs;Sarah Fleitmann;Karin Havemann;Benedikt Scherer;Jan Vogelbruch;Lotte Geck;Stefan van Waasen\",\"doi\":\"10.1109/TQE.2025.3596392\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gate-defined semiconductor quantum dots require an appropriate number of electrons to function as qubits. The number of electrons is usually tuned by analyzing charge stability diagrams, in which charge transitions manifest as edges. Therefore, to fully automate qubit tuning, it is necessary to recognize these edges automatically and reliably. This article investigates possible detection methods, describes their training with simulated data from the SimCATS framework, and performs a quantitative comparison with a future hardware implementation in mind. Furthermore, we investigated the quality of the optimized approaches on experimentally measured data from a GaAs and a SiGe qubit sample.\",\"PeriodicalId\":100644,\"journal\":{\"name\":\"IEEE Transactions on Quantum Engineering\",\"volume\":\"6 \",\"pages\":\"1-14\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11119076\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Quantum Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11119076/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Quantum Engineering","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11119076/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

门定义半导体量子点需要适当数量的电子来发挥量子比特的作用。电子的数量通常是通过分析电荷稳定性图来调整的,在电荷稳定性图中,电荷跃迁表现为边缘。因此,为了完全自动化量子比特调优,有必要自动可靠地识别这些边缘。本文研究了可能的检测方法,用SimCATS框架的模拟数据描述了它们的训练,并与未来的硬件实现进行了定量比较。此外,我们在GaAs和SiGe量子比特样本的实验测量数据上研究了优化方法的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated Charge Transition Detection in Quantum Dot Charge Stability Diagrams
Gate-defined semiconductor quantum dots require an appropriate number of electrons to function as qubits. The number of electrons is usually tuned by analyzing charge stability diagrams, in which charge transitions manifest as edges. Therefore, to fully automate qubit tuning, it is necessary to recognize these edges automatically and reliably. This article investigates possible detection methods, describes their training with simulated data from the SimCATS framework, and performs a quantitative comparison with a future hardware implementation in mind. Furthermore, we investigated the quality of the optimized approaches on experimentally measured data from a GaAs and a SiGe qubit sample.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信