基于mdp的安全性与最优性相结合的高层决策:自动超车

Xue-Fang Wang;Jingjing Jiang;Wen-Hua Chen
{"title":"基于mdp的安全性与最优性相结合的高层决策:自动超车","authors":"Xue-Fang Wang;Jingjing Jiang;Wen-Hua Chen","doi":"10.1109/OJCSYS.2025.3600925","DOIUrl":null,"url":null,"abstract":"This paper presents a novel solution for optimal high-level decision-making in autonomous overtaking on two-lane roads, considering both opposite-direction and same-direction traffic. The proposed solutionaccounts for key factors such as safety and optimality, while also ensuring recursive feasibility and stability.To safely complete overtaking maneuvers, the solution is built on a constrained Markov decision process (MDP) that generates optimal decisions for path planners. By combining MDP with model predictive control (MPC), the approach guarantees recursive feasibility and stability through a baseline control policy that calculates the terminal cost and is incorporated into a constructed Lyapunov function. The proposed solution is validated through five simulated driving scenarios, demonstrating its robustness in handling diverse interactions within dynamic and complex traffic conditions.","PeriodicalId":73299,"journal":{"name":"IEEE open journal of control systems","volume":"4 ","pages":"299-315"},"PeriodicalIF":0.0000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11130904","citationCount":"0","resultStr":"{\"title\":\"MDP-Based High-Level Decision-Making for Combining Safety and Optimality: Autonomous Overtaking\",\"authors\":\"Xue-Fang Wang;Jingjing Jiang;Wen-Hua Chen\",\"doi\":\"10.1109/OJCSYS.2025.3600925\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel solution for optimal high-level decision-making in autonomous overtaking on two-lane roads, considering both opposite-direction and same-direction traffic. The proposed solutionaccounts for key factors such as safety and optimality, while also ensuring recursive feasibility and stability.To safely complete overtaking maneuvers, the solution is built on a constrained Markov decision process (MDP) that generates optimal decisions for path planners. By combining MDP with model predictive control (MPC), the approach guarantees recursive feasibility and stability through a baseline control policy that calculates the terminal cost and is incorporated into a constructed Lyapunov function. The proposed solution is validated through five simulated driving scenarios, demonstrating its robustness in handling diverse interactions within dynamic and complex traffic conditions.\",\"PeriodicalId\":73299,\"journal\":{\"name\":\"IEEE open journal of control systems\",\"volume\":\"4 \",\"pages\":\"299-315\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11130904\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE open journal of control systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11130904/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of control systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11130904/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种考虑反向和同向车辆的双车道自动超车高层最优决策的新方法。该方案兼顾了安全性和最优性等关键因素,同时保证了递归的可行性和稳定性。为了安全地完成超车操作,该解决方案建立在约束马尔可夫决策过程(MDP)的基础上,该决策过程为路径规划者生成最优决策。通过将MDP与模型预测控制(MPC)相结合,该方法通过计算终端成本的基线控制策略来保证递归的可行性和稳定性,并将其纳入构建的Lyapunov函数中。通过五个模拟驾驶场景验证了该方案的有效性,证明了其在处理动态和复杂交通条件下的各种交互方面的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MDP-Based High-Level Decision-Making for Combining Safety and Optimality: Autonomous Overtaking
This paper presents a novel solution for optimal high-level decision-making in autonomous overtaking on two-lane roads, considering both opposite-direction and same-direction traffic. The proposed solutionaccounts for key factors such as safety and optimality, while also ensuring recursive feasibility and stability.To safely complete overtaking maneuvers, the solution is built on a constrained Markov decision process (MDP) that generates optimal decisions for path planners. By combining MDP with model predictive control (MPC), the approach guarantees recursive feasibility and stability through a baseline control policy that calculates the terminal cost and is incorporated into a constructed Lyapunov function. The proposed solution is validated through five simulated driving scenarios, demonstrating its robustness in handling diverse interactions within dynamic and complex traffic conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信