{"title":"基于网络控制理论和秩编码的图机学习特征构建","authors":"Anwar Said;Yifan Wei;Obaid Ullah Ahmad;Mudassir Shabbir;Waseem Abbas;Xenofon Koutsoukos","doi":"10.1109/OJCSYS.2025.3599371","DOIUrl":null,"url":null,"abstract":"In this article, we utilize the concept of average controllability in graphs, along with a novel rank encoding method, to enhance the performance of Graph Neural Networks (GNNs) in social network classification tasks. GNNs have proven highly effective in various network-based learning applications and require some form of node features to function. However, their performance is heavily influenced by the expressiveness of these features. In social networks, node features are often unavailable due to privacy constraints or the absence of inherent attributes, making it challenging for GNNs to achieve optimal performance. To address this limitation, we propose two strategies for constructing expressive node features. First, we introduce average controllability along with other centrality metrics (denoted as NCT-EFA) as node-level metrics that capture critical aspects of network topology. Building on this, we develop a rank encoding method that transforms average controllability—or any other graph-theoretic metric—into a fixed-dimensional feature space, thereby improving feature representation. We conduct extensive numerical evaluations using six benchmark GNN models across four social network datasets to compare different node feature construction methods. Our results demonstrate that incorporating average controllability into the feature space significantly improves GNN performance. Moreover, the proposed rank encoding method outperforms traditional one-hot degree encoding, improving the ROC AUC from 68.7% to 73.9% using GraphSAGE on the GitHub Stargazers dataset, underscoring its effectiveness in generating expressive and efficient node representations.","PeriodicalId":73299,"journal":{"name":"IEEE open journal of control systems","volume":"4 ","pages":"288-298"},"PeriodicalIF":0.0000,"publicationDate":"2025-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11126872","citationCount":"0","resultStr":"{\"title\":\"Feature Construction Using Network Control Theory and Rank Encoding for Graph Machine Learning\",\"authors\":\"Anwar Said;Yifan Wei;Obaid Ullah Ahmad;Mudassir Shabbir;Waseem Abbas;Xenofon Koutsoukos\",\"doi\":\"10.1109/OJCSYS.2025.3599371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we utilize the concept of average controllability in graphs, along with a novel rank encoding method, to enhance the performance of Graph Neural Networks (GNNs) in social network classification tasks. GNNs have proven highly effective in various network-based learning applications and require some form of node features to function. However, their performance is heavily influenced by the expressiveness of these features. In social networks, node features are often unavailable due to privacy constraints or the absence of inherent attributes, making it challenging for GNNs to achieve optimal performance. To address this limitation, we propose two strategies for constructing expressive node features. First, we introduce average controllability along with other centrality metrics (denoted as NCT-EFA) as node-level metrics that capture critical aspects of network topology. Building on this, we develop a rank encoding method that transforms average controllability—or any other graph-theoretic metric—into a fixed-dimensional feature space, thereby improving feature representation. We conduct extensive numerical evaluations using six benchmark GNN models across four social network datasets to compare different node feature construction methods. Our results demonstrate that incorporating average controllability into the feature space significantly improves GNN performance. Moreover, the proposed rank encoding method outperforms traditional one-hot degree encoding, improving the ROC AUC from 68.7% to 73.9% using GraphSAGE on the GitHub Stargazers dataset, underscoring its effectiveness in generating expressive and efficient node representations.\",\"PeriodicalId\":73299,\"journal\":{\"name\":\"IEEE open journal of control systems\",\"volume\":\"4 \",\"pages\":\"288-298\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11126872\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE open journal of control systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11126872/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of control systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11126872/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Feature Construction Using Network Control Theory and Rank Encoding for Graph Machine Learning
In this article, we utilize the concept of average controllability in graphs, along with a novel rank encoding method, to enhance the performance of Graph Neural Networks (GNNs) in social network classification tasks. GNNs have proven highly effective in various network-based learning applications and require some form of node features to function. However, their performance is heavily influenced by the expressiveness of these features. In social networks, node features are often unavailable due to privacy constraints or the absence of inherent attributes, making it challenging for GNNs to achieve optimal performance. To address this limitation, we propose two strategies for constructing expressive node features. First, we introduce average controllability along with other centrality metrics (denoted as NCT-EFA) as node-level metrics that capture critical aspects of network topology. Building on this, we develop a rank encoding method that transforms average controllability—or any other graph-theoretic metric—into a fixed-dimensional feature space, thereby improving feature representation. We conduct extensive numerical evaluations using six benchmark GNN models across four social network datasets to compare different node feature construction methods. Our results demonstrate that incorporating average controllability into the feature space significantly improves GNN performance. Moreover, the proposed rank encoding method outperforms traditional one-hot degree encoding, improving the ROC AUC from 68.7% to 73.9% using GraphSAGE on the GitHub Stargazers dataset, underscoring its effectiveness in generating expressive and efficient node representations.