Zhangdong Wang;Zhihuang Liu;Yuanjing Luo;Tongqing Zhou;Jiaohua Qin;Zhiping Cai
{"title":"PPIDM:云中扩散模型的隐私保护推理","authors":"Zhangdong Wang;Zhihuang Liu;Yuanjing Luo;Tongqing Zhou;Jiaohua Qin;Zhiping Cai","doi":"10.1109/TCSVT.2025.3553514","DOIUrl":null,"url":null,"abstract":"Cloud environments enhance diffusion model efficiency but introduce privacy risks, including intellectual property theft and data breaches. As AI-generated images gain recognition as copyright-protected works, ensuring their security and intellectual property protection in cloud environments has become a pressing challenge. This paper addresses privacy protection in diffusion model inference under cloud environments, identifying two key characteristics—denoising-encryption antagonism and stepwise generative nature—that create challenges such as incompatibility with traditional encryption, incomplete input parameter representation, and inseparability of the generative process. We propose PPIDM (<bold>P</b>rivacy-<bold>P</b>reserving <bold>I</b>nference for <bold>D</b>iffusion <bold>M</b>odels), a framework that balances efficiency and privacy by retaining lightweight text encoding and image decoding on the client while offloading computationally intensive U-Net layers to multiple non-colluding cloud servers. Client-side aggregation reduces computational overhead and enhances security. Experiments show PPIDM offloads 67% of Stable Diffusion computations to the cloud, reduces image leakage by 75%, and maintains high output quality (PSNR = 36.9, FID = 4.56), comparable to standard outputs. PPIDM offers a secure and efficient solution for cloud-based diffusion model inference.","PeriodicalId":13082,"journal":{"name":"IEEE Transactions on Circuits and Systems for Video Technology","volume":"35 9","pages":"8849-8863"},"PeriodicalIF":11.1000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PPIDM: Privacy-Preserving Inference for Diffusion Model in the Cloud\",\"authors\":\"Zhangdong Wang;Zhihuang Liu;Yuanjing Luo;Tongqing Zhou;Jiaohua Qin;Zhiping Cai\",\"doi\":\"10.1109/TCSVT.2025.3553514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cloud environments enhance diffusion model efficiency but introduce privacy risks, including intellectual property theft and data breaches. As AI-generated images gain recognition as copyright-protected works, ensuring their security and intellectual property protection in cloud environments has become a pressing challenge. This paper addresses privacy protection in diffusion model inference under cloud environments, identifying two key characteristics—denoising-encryption antagonism and stepwise generative nature—that create challenges such as incompatibility with traditional encryption, incomplete input parameter representation, and inseparability of the generative process. We propose PPIDM (<bold>P</b>rivacy-<bold>P</b>reserving <bold>I</b>nference for <bold>D</b>iffusion <bold>M</b>odels), a framework that balances efficiency and privacy by retaining lightweight text encoding and image decoding on the client while offloading computationally intensive U-Net layers to multiple non-colluding cloud servers. Client-side aggregation reduces computational overhead and enhances security. Experiments show PPIDM offloads 67% of Stable Diffusion computations to the cloud, reduces image leakage by 75%, and maintains high output quality (PSNR = 36.9, FID = 4.56), comparable to standard outputs. PPIDM offers a secure and efficient solution for cloud-based diffusion model inference.\",\"PeriodicalId\":13082,\"journal\":{\"name\":\"IEEE Transactions on Circuits and Systems for Video Technology\",\"volume\":\"35 9\",\"pages\":\"8849-8863\"},\"PeriodicalIF\":11.1000,\"publicationDate\":\"2025-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Circuits and Systems for Video Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10937222/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Circuits and Systems for Video Technology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10937222/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
PPIDM: Privacy-Preserving Inference for Diffusion Model in the Cloud
Cloud environments enhance diffusion model efficiency but introduce privacy risks, including intellectual property theft and data breaches. As AI-generated images gain recognition as copyright-protected works, ensuring their security and intellectual property protection in cloud environments has become a pressing challenge. This paper addresses privacy protection in diffusion model inference under cloud environments, identifying two key characteristics—denoising-encryption antagonism and stepwise generative nature—that create challenges such as incompatibility with traditional encryption, incomplete input parameter representation, and inseparability of the generative process. We propose PPIDM (Privacy-Preserving Inference for Diffusion Models), a framework that balances efficiency and privacy by retaining lightweight text encoding and image decoding on the client while offloading computationally intensive U-Net layers to multiple non-colluding cloud servers. Client-side aggregation reduces computational overhead and enhances security. Experiments show PPIDM offloads 67% of Stable Diffusion computations to the cloud, reduces image leakage by 75%, and maintains high output quality (PSNR = 36.9, FID = 4.56), comparable to standard outputs. PPIDM offers a secure and efficient solution for cloud-based diffusion model inference.
期刊介绍:
The IEEE Transactions on Circuits and Systems for Video Technology (TCSVT) is dedicated to covering all aspects of video technologies from a circuits and systems perspective. We encourage submissions of general, theoretical, and application-oriented papers related to image and video acquisition, representation, presentation, and display. Additionally, we welcome contributions in areas such as processing, filtering, and transforms; analysis and synthesis; learning and understanding; compression, transmission, communication, and networking; as well as storage, retrieval, indexing, and search. Furthermore, papers focusing on hardware and software design and implementation are highly valued. Join us in advancing the field of video technology through innovative research and insights.