TinyFusionDet:用于边缘3D目标检测的硬件高效LiDAR-Camera融合框架

IF 11.1 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Yishi Li;Fanhong Zeng;Rui Lai;Tong Wu;Juntao Guan;Anfu Zhu;Zhangming Zhu
{"title":"TinyFusionDet:用于边缘3D目标检测的硬件高效LiDAR-Camera融合框架","authors":"Yishi Li;Fanhong Zeng;Rui Lai;Tong Wu;Juntao Guan;Anfu Zhu;Zhangming Zhu","doi":"10.1109/TCSVT.2025.3556711","DOIUrl":null,"url":null,"abstract":"Current LiDAR-Camera fusion methods for 3D object detection achieve considerable accuracy at the immense cost of computation and storage, posing challenges for the deployment at the edge. To address this issue, we propose a lightweight 3D object detection framework, namely TinyFusionDet. Specially, we put forward an ingenious Hybrid Scale Pillar Strategy in LiDAR point cloud feature extraction to efficiently improve the detection accuracy of small objects. Meanwhile, a low cost Cross-Modal Heatmap Attention module is presented to suppress background interference in image features for reducing false positives. Moreover, a Cross-Modal Feature Interaction module is designed to enhance the cross-modal information fusion among channels for further promoting the detection precision. Extensive experiments demonstrated that TinyFusionDet achieves competitive accuracy with the lowest memory consumption and inference latency, making it suitable for hardware constrained edge devices. Furthermore, TinyFusionDet is implemented on a customized FPGA-based prototype system, yielding a record high energy efficiency up to 114.97GOPS/W. To the best of our knowledge, this marks the first real-time LiDAR-Camera fusion detection framework for edge applications.","PeriodicalId":13082,"journal":{"name":"IEEE Transactions on Circuits and Systems for Video Technology","volume":"35 9","pages":"8819-8834"},"PeriodicalIF":11.1000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TinyFusionDet: Hardware-Efficient LiDAR-Camera Fusion Framework for 3D Object Detection at Edge\",\"authors\":\"Yishi Li;Fanhong Zeng;Rui Lai;Tong Wu;Juntao Guan;Anfu Zhu;Zhangming Zhu\",\"doi\":\"10.1109/TCSVT.2025.3556711\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Current LiDAR-Camera fusion methods for 3D object detection achieve considerable accuracy at the immense cost of computation and storage, posing challenges for the deployment at the edge. To address this issue, we propose a lightweight 3D object detection framework, namely TinyFusionDet. Specially, we put forward an ingenious Hybrid Scale Pillar Strategy in LiDAR point cloud feature extraction to efficiently improve the detection accuracy of small objects. Meanwhile, a low cost Cross-Modal Heatmap Attention module is presented to suppress background interference in image features for reducing false positives. Moreover, a Cross-Modal Feature Interaction module is designed to enhance the cross-modal information fusion among channels for further promoting the detection precision. Extensive experiments demonstrated that TinyFusionDet achieves competitive accuracy with the lowest memory consumption and inference latency, making it suitable for hardware constrained edge devices. Furthermore, TinyFusionDet is implemented on a customized FPGA-based prototype system, yielding a record high energy efficiency up to 114.97GOPS/W. To the best of our knowledge, this marks the first real-time LiDAR-Camera fusion detection framework for edge applications.\",\"PeriodicalId\":13082,\"journal\":{\"name\":\"IEEE Transactions on Circuits and Systems for Video Technology\",\"volume\":\"35 9\",\"pages\":\"8819-8834\"},\"PeriodicalIF\":11.1000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Circuits and Systems for Video Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10947105/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Circuits and Systems for Video Technology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10947105/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

目前用于3D目标检测的LiDAR-Camera融合方法以巨大的计算和存储成本实现了相当高的精度,这给边缘部署带来了挑战。为了解决这个问题,我们提出了一个轻量级的3D物体检测框架,即TinyFusionDet。在激光雷达点云特征提取中,提出了一种巧妙的混合尺度柱策略,有效提高了小目标的检测精度。同时,提出了一种低成本的跨模态热图注意模块来抑制图像特征中的背景干扰,减少误报。此外,设计了跨模态特征交互模块,增强通道间的跨模态信息融合,进一步提高检测精度。大量的实验表明,TinyFusionDet以最低的内存消耗和推理延迟实现了具有竞争力的准确性,使其适用于硬件受限的边缘设备。此外,TinyFusionDet在定制的基于fpga的原型系统上实现,产生了创纪录的高能效,最高可达114.97GOPS/W。据我们所知,这标志着第一个用于边缘应用的实时LiDAR-Camera融合检测框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
TinyFusionDet: Hardware-Efficient LiDAR-Camera Fusion Framework for 3D Object Detection at Edge
Current LiDAR-Camera fusion methods for 3D object detection achieve considerable accuracy at the immense cost of computation and storage, posing challenges for the deployment at the edge. To address this issue, we propose a lightweight 3D object detection framework, namely TinyFusionDet. Specially, we put forward an ingenious Hybrid Scale Pillar Strategy in LiDAR point cloud feature extraction to efficiently improve the detection accuracy of small objects. Meanwhile, a low cost Cross-Modal Heatmap Attention module is presented to suppress background interference in image features for reducing false positives. Moreover, a Cross-Modal Feature Interaction module is designed to enhance the cross-modal information fusion among channels for further promoting the detection precision. Extensive experiments demonstrated that TinyFusionDet achieves competitive accuracy with the lowest memory consumption and inference latency, making it suitable for hardware constrained edge devices. Furthermore, TinyFusionDet is implemented on a customized FPGA-based prototype system, yielding a record high energy efficiency up to 114.97GOPS/W. To the best of our knowledge, this marks the first real-time LiDAR-Camera fusion detection framework for edge applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
13.80
自引率
27.40%
发文量
660
审稿时长
5 months
期刊介绍: The IEEE Transactions on Circuits and Systems for Video Technology (TCSVT) is dedicated to covering all aspects of video technologies from a circuits and systems perspective. We encourage submissions of general, theoretical, and application-oriented papers related to image and video acquisition, representation, presentation, and display. Additionally, we welcome contributions in areas such as processing, filtering, and transforms; analysis and synthesis; learning and understanding; compression, transmission, communication, and networking; as well as storage, retrieval, indexing, and search. Furthermore, papers focusing on hardware and software design and implementation are highly valued. Join us in advancing the field of video technology through innovative research and insights.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信