守恒能量下Stokes波不稳定特征值的分岔

IF 2.9 3区 数学 Q1 MATHEMATICS, APPLIED
Sergey Dyachenko , Dmitry E. Pelinovsky
{"title":"守恒能量下Stokes波不稳定特征值的分岔","authors":"Sergey Dyachenko ,&nbsp;Dmitry E. Pelinovsky","doi":"10.1016/j.physd.2025.134925","DOIUrl":null,"url":null,"abstract":"<div><div>We address Euler’s equations for irrotational gravity waves in an infinitely deep fluid rewritten in conformal variables. Stokes waves are traveling waves with the smooth periodic profiles. In agreement with the previous numerical results, we give a rigorous proof that the zero eigenvalue bifurcation in the linearized equations of motion for co-periodic perturbations occurs at each extremal point of the energy function versus the steepness parameter, provided that the wave speed is not extremal at the same steepness. We derive the leading order of the unstable eigenvalues and, assisted with numerical approximation of its coefficients, we show that the new unstable eigenvalues emerge only in the direction of increasing steepness.</div></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":"483 ","pages":"Article 134925"},"PeriodicalIF":2.9000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bifurcations of unstable eigenvalues for Stokes waves derived from conserved energy\",\"authors\":\"Sergey Dyachenko ,&nbsp;Dmitry E. Pelinovsky\",\"doi\":\"10.1016/j.physd.2025.134925\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We address Euler’s equations for irrotational gravity waves in an infinitely deep fluid rewritten in conformal variables. Stokes waves are traveling waves with the smooth periodic profiles. In agreement with the previous numerical results, we give a rigorous proof that the zero eigenvalue bifurcation in the linearized equations of motion for co-periodic perturbations occurs at each extremal point of the energy function versus the steepness parameter, provided that the wave speed is not extremal at the same steepness. We derive the leading order of the unstable eigenvalues and, assisted with numerical approximation of its coefficients, we show that the new unstable eigenvalues emerge only in the direction of increasing steepness.</div></div>\",\"PeriodicalId\":20050,\"journal\":{\"name\":\"Physica D: Nonlinear Phenomena\",\"volume\":\"483 \",\"pages\":\"Article 134925\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica D: Nonlinear Phenomena\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167278925004026\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278925004026","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们解决欧拉方程的不旋转重力波在一个无限深流体改写为保形变量。斯托克斯波是具有平滑周期剖面的行波。与前面的数值结果一致,我们给出了一个严格的证明,即当波速在相同的陡度处不是极值时,共周期扰动线性化运动方程在相对于陡度参数的能量函数的每一个极值点上都出现零特征值分岔。我们导出了不稳定特征值的阶数,并借助于其系数的数值逼近,证明了新的不稳定特征值只在陡度增加的方向上出现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bifurcations of unstable eigenvalues for Stokes waves derived from conserved energy
We address Euler’s equations for irrotational gravity waves in an infinitely deep fluid rewritten in conformal variables. Stokes waves are traveling waves with the smooth periodic profiles. In agreement with the previous numerical results, we give a rigorous proof that the zero eigenvalue bifurcation in the linearized equations of motion for co-periodic perturbations occurs at each extremal point of the energy function versus the steepness parameter, provided that the wave speed is not extremal at the same steepness. We derive the leading order of the unstable eigenvalues and, assisted with numerical approximation of its coefficients, we show that the new unstable eigenvalues emerge only in the direction of increasing steepness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physica D: Nonlinear Phenomena
Physica D: Nonlinear Phenomena 物理-物理:数学物理
CiteScore
7.30
自引率
7.50%
发文量
213
审稿时长
65 days
期刊介绍: Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信