利用矿物吸附剂从水溶液中去除铯:机制、动力学和热力学

IF 2.1 3区 工程技术 Q1 NUCLEAR SCIENCE & TECHNOLOGY
Shizong Wang , Jianlong Wang , Xuan Guo
{"title":"利用矿物吸附剂从水溶液中去除铯:机制、动力学和热力学","authors":"Shizong Wang ,&nbsp;Jianlong Wang ,&nbsp;Xuan Guo","doi":"10.1016/j.nucengdes.2025.114461","DOIUrl":null,"url":null,"abstract":"<div><div>This study evaluated cesium (Cs) removal by six minerals, with removal efficiencies at pH 7 of 100 % (zeolite), 85.4 % (montmorillonite), 83.8 % (Na-bentonite), 56.2 % (bentonite), 29.5 % (K-feldspar), and 24.3 % (phlogopite). Sips model-derived capacities reached 15.1  mg/g (zeolite), 11.3 mg/g (montmorillonite), 9.67 mg/g (Na-bentonite), 9.02 mg/g (bentonite), 5.07 mg/g (K-feldspar), and 4.70 mg/g (phlogopite). Thermodynamic analysis confirmed spontaneous, endothermic adsorption. Mechanisms analysis revealed that Cs removal occurred mainly via ion exchange or surface coordination, varying by mineral. Zeolite immobilized Cs in its porous structure; montmorillonite and bentonite used interlayer exchange and hydroxyl coordination; phlogopite formed Al-O-Cs complexes via hydroxyl-fluoride substitution; Na-bentonite enabled Cs-Na exchange with octahedral [Al(OH)<sub>6</sub>]<sup>3–</sup> stabilization; K-feldspar achieved Cs-O-Al surface bonding. Under 100  kGy <sup>60</sup>Co irradiation, phlogopite, Na-bentonite, and K-feldspar maintained stable Cs adsorption, while zeolite, montmorillonite, and bentonite showed efficiency reductions of ∼ 8–27 %. Among the tested materials, zeolite, montmorillonite, and Na-bentonite are recommended for their high Cs affinity and radiation durability. These findings highlight the importance of balancing adsorption capacity and radiation resistance in selecting optimal minerals for radioactive Cs remediation and long-term environmental protection.</div></div>","PeriodicalId":19170,"journal":{"name":"Nuclear Engineering and Design","volume":"445 ","pages":"Article 114461"},"PeriodicalIF":2.1000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cesium removal from aqueous solutions using mineral adsorbents: Mechanisms, kinetics, and thermodynamics\",\"authors\":\"Shizong Wang ,&nbsp;Jianlong Wang ,&nbsp;Xuan Guo\",\"doi\":\"10.1016/j.nucengdes.2025.114461\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study evaluated cesium (Cs) removal by six minerals, with removal efficiencies at pH 7 of 100 % (zeolite), 85.4 % (montmorillonite), 83.8 % (Na-bentonite), 56.2 % (bentonite), 29.5 % (K-feldspar), and 24.3 % (phlogopite). Sips model-derived capacities reached 15.1  mg/g (zeolite), 11.3 mg/g (montmorillonite), 9.67 mg/g (Na-bentonite), 9.02 mg/g (bentonite), 5.07 mg/g (K-feldspar), and 4.70 mg/g (phlogopite). Thermodynamic analysis confirmed spontaneous, endothermic adsorption. Mechanisms analysis revealed that Cs removal occurred mainly via ion exchange or surface coordination, varying by mineral. Zeolite immobilized Cs in its porous structure; montmorillonite and bentonite used interlayer exchange and hydroxyl coordination; phlogopite formed Al-O-Cs complexes via hydroxyl-fluoride substitution; Na-bentonite enabled Cs-Na exchange with octahedral [Al(OH)<sub>6</sub>]<sup>3–</sup> stabilization; K-feldspar achieved Cs-O-Al surface bonding. Under 100  kGy <sup>60</sup>Co irradiation, phlogopite, Na-bentonite, and K-feldspar maintained stable Cs adsorption, while zeolite, montmorillonite, and bentonite showed efficiency reductions of ∼ 8–27 %. Among the tested materials, zeolite, montmorillonite, and Na-bentonite are recommended for their high Cs affinity and radiation durability. These findings highlight the importance of balancing adsorption capacity and radiation resistance in selecting optimal minerals for radioactive Cs remediation and long-term environmental protection.</div></div>\",\"PeriodicalId\":19170,\"journal\":{\"name\":\"Nuclear Engineering and Design\",\"volume\":\"445 \",\"pages\":\"Article 114461\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Engineering and Design\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0029549325006387\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Engineering and Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0029549325006387","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究评估了6种矿物对铯(Cs)的去除率,在pH为7时的去除率分别为100%(沸石)、85.4%(蒙脱土)、83.8%(钠-膨润土)、56.2%(膨润土)、29.5%(钾长石)和24.3%(绿云母)。Sips模型导出的容量达到15.1 mg/g(沸石)、11.3 mg/g(蒙脱土)、9.67 mg/g(钠-膨润土)、9.02 mg/g(膨润土)、5.07 mg/g(钾长石)和4.70 mg/g(绿云母)。热力学分析证实了自发吸热吸附。机理分析表明,Cs的去除主要通过离子交换或表面配位进行,并随矿物的不同而不同。沸石在其多孔结构中固定Cs;蒙脱土与膨润土利用层间交换和羟基配位;云母通过羟基氟化物取代形成Al-O-Cs配合物;钠-膨润土使碳钠交换与八面体[Al(OH)6]3 -稳定;钾长石实现了Cs-O-Al表面键合。在100kgy 60Co照射下,云母、钠-膨润土和钾长石对Cs的吸附保持稳定,而沸石、蒙脱土和膨润土的吸附效率降低了~ 8 - 27%。在测试材料中,沸石、蒙脱土和钠-膨润土因其高的Cs亲和力和辐射耐久性而被推荐。这些发现强调了平衡吸附能力和抗辐射能力对于选择最佳矿物进行放射性碳修复和长期环境保护的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cesium removal from aqueous solutions using mineral adsorbents: Mechanisms, kinetics, and thermodynamics
This study evaluated cesium (Cs) removal by six minerals, with removal efficiencies at pH 7 of 100 % (zeolite), 85.4 % (montmorillonite), 83.8 % (Na-bentonite), 56.2 % (bentonite), 29.5 % (K-feldspar), and 24.3 % (phlogopite). Sips model-derived capacities reached 15.1  mg/g (zeolite), 11.3 mg/g (montmorillonite), 9.67 mg/g (Na-bentonite), 9.02 mg/g (bentonite), 5.07 mg/g (K-feldspar), and 4.70 mg/g (phlogopite). Thermodynamic analysis confirmed spontaneous, endothermic adsorption. Mechanisms analysis revealed that Cs removal occurred mainly via ion exchange or surface coordination, varying by mineral. Zeolite immobilized Cs in its porous structure; montmorillonite and bentonite used interlayer exchange and hydroxyl coordination; phlogopite formed Al-O-Cs complexes via hydroxyl-fluoride substitution; Na-bentonite enabled Cs-Na exchange with octahedral [Al(OH)6]3– stabilization; K-feldspar achieved Cs-O-Al surface bonding. Under 100  kGy 60Co irradiation, phlogopite, Na-bentonite, and K-feldspar maintained stable Cs adsorption, while zeolite, montmorillonite, and bentonite showed efficiency reductions of ∼ 8–27 %. Among the tested materials, zeolite, montmorillonite, and Na-bentonite are recommended for their high Cs affinity and radiation durability. These findings highlight the importance of balancing adsorption capacity and radiation resistance in selecting optimal minerals for radioactive Cs remediation and long-term environmental protection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nuclear Engineering and Design
Nuclear Engineering and Design 工程技术-核科学技术
CiteScore
3.40
自引率
11.80%
发文量
377
审稿时长
5 months
期刊介绍: Nuclear Engineering and Design covers the wide range of disciplines involved in the engineering, design, safety and construction of nuclear fission reactors. The Editors welcome papers both on applied and innovative aspects and developments in nuclear science and technology. Fundamentals of Reactor Design include: • Thermal-Hydraulics and Core Physics • Safety Analysis, Risk Assessment (PSA) • Structural and Mechanical Engineering • Materials Science • Fuel Behavior and Design • Structural Plant Design • Engineering of Reactor Components • Experiments Aspects beyond fundamentals of Reactor Design covered: • Accident Mitigation Measures • Reactor Control Systems • Licensing Issues • Safeguard Engineering • Economy of Plants • Reprocessing / Waste Disposal • Applications of Nuclear Energy • Maintenance • Decommissioning Papers on new reactor ideas and developments (Generation IV reactors) such as inherently safe modular HTRs, High Performance LWRs/HWRs and LMFBs/GFR will be considered; Actinide Burners, Accelerator Driven Systems, Energy Amplifiers and other special designs of power and research reactors and their applications are also encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信