{"title":"黑洞和引力波在现实模型中的相变","authors":"M. Lewicki , P. Toczek , V. Vaskonen","doi":"10.1016/j.dark.2025.102075","DOIUrl":null,"url":null,"abstract":"<div><div>We study realistic models predicting primordial black hole (PBH) formation from density fluctuations generated in a first-order phase transition. We show that the second-order correction in the expansion of the bubble nucleation rate is necessary for accurate predictions and quantify its impact on the abundance of PBHs and gravitational waves (GWs). We find that the distribution of the fluctuations becomes more Gaussian as the second-order term increases. Consequently, models that predict the same PBH abundances can produce different GW spectra.</div></div>","PeriodicalId":48774,"journal":{"name":"Physics of the Dark Universe","volume":"50 ","pages":"Article 102075"},"PeriodicalIF":6.4000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Black holes and gravitational waves from phase transitions in realistic models\",\"authors\":\"M. Lewicki , P. Toczek , V. Vaskonen\",\"doi\":\"10.1016/j.dark.2025.102075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study realistic models predicting primordial black hole (PBH) formation from density fluctuations generated in a first-order phase transition. We show that the second-order correction in the expansion of the bubble nucleation rate is necessary for accurate predictions and quantify its impact on the abundance of PBHs and gravitational waves (GWs). We find that the distribution of the fluctuations becomes more Gaussian as the second-order term increases. Consequently, models that predict the same PBH abundances can produce different GW spectra.</div></div>\",\"PeriodicalId\":48774,\"journal\":{\"name\":\"Physics of the Dark Universe\",\"volume\":\"50 \",\"pages\":\"Article 102075\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics of the Dark Universe\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212686425002687\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of the Dark Universe","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212686425002687","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Black holes and gravitational waves from phase transitions in realistic models
We study realistic models predicting primordial black hole (PBH) formation from density fluctuations generated in a first-order phase transition. We show that the second-order correction in the expansion of the bubble nucleation rate is necessary for accurate predictions and quantify its impact on the abundance of PBHs and gravitational waves (GWs). We find that the distribution of the fluctuations becomes more Gaussian as the second-order term increases. Consequently, models that predict the same PBH abundances can produce different GW spectra.
期刊介绍:
Physics of the Dark Universe is an innovative online-only journal that offers rapid publication of peer-reviewed, original research articles considered of high scientific impact.
The journal is focused on the understanding of Dark Matter, Dark Energy, Early Universe, gravitational waves and neutrinos, covering all theoretical, experimental and phenomenological aspects.