天文学中机器学习应用的人工制品数据集

IF 2.1 4区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
Sreevarsha Sreejith , Maria V. Pruzhinskaya , Alina A. Volnova , Vadim V. Krushinsky , Konstantin L. Malanchev , Emille E.O. Ishida , Anastasia D. Lavrukhina , Timofey A. Semenikhin , Emmanuel Gangler , Matwey V. Kornilov , Vladimir S. Korolev
{"title":"天文学中机器学习应用的人工制品数据集","authors":"Sreevarsha Sreejith ,&nbsp;Maria V. Pruzhinskaya ,&nbsp;Alina A. Volnova ,&nbsp;Vadim V. Krushinsky ,&nbsp;Konstantin L. Malanchev ,&nbsp;Emille E.O. Ishida ,&nbsp;Anastasia D. Lavrukhina ,&nbsp;Timofey A. Semenikhin ,&nbsp;Emmanuel Gangler ,&nbsp;Matwey V. Kornilov ,&nbsp;Vladimir S. Korolev","doi":"10.1016/j.newast.2025.102466","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate photometry in astronomical surveys is challenged by image artefacts, which affect measurements and degrade data quality. Due to the large amount of available data, this task is increasingly handled using machine learning algorithms, which often require a labelled training set to learn data patterns. We present an expert-labelled dataset of 1127 artefacts with 1213 labels from 26 fields in ZTF DR3, along with a complementary set of nominal objects. The artefact dataset was compiled using the active anomaly detection algorithm <span>PineForest</span>, developed by the SNAD team. These datasets can serve as valuable resources for real-bogus classification, catalogue cleaning, anomaly detection, and educational purposes. Both artefacts and nominal images are provided in FITS format in two sizes (28 × 28 and 63 × 63 pixels). The datasets are publicly available for further scientific applications.</div></div>","PeriodicalId":54727,"journal":{"name":"New Astronomy","volume":"122 ","pages":"Article 102466"},"PeriodicalIF":2.1000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dataset of artefacts for machine learning applications in astronomy\",\"authors\":\"Sreevarsha Sreejith ,&nbsp;Maria V. Pruzhinskaya ,&nbsp;Alina A. Volnova ,&nbsp;Vadim V. Krushinsky ,&nbsp;Konstantin L. Malanchev ,&nbsp;Emille E.O. Ishida ,&nbsp;Anastasia D. Lavrukhina ,&nbsp;Timofey A. Semenikhin ,&nbsp;Emmanuel Gangler ,&nbsp;Matwey V. Kornilov ,&nbsp;Vladimir S. Korolev\",\"doi\":\"10.1016/j.newast.2025.102466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Accurate photometry in astronomical surveys is challenged by image artefacts, which affect measurements and degrade data quality. Due to the large amount of available data, this task is increasingly handled using machine learning algorithms, which often require a labelled training set to learn data patterns. We present an expert-labelled dataset of 1127 artefacts with 1213 labels from 26 fields in ZTF DR3, along with a complementary set of nominal objects. The artefact dataset was compiled using the active anomaly detection algorithm <span>PineForest</span>, developed by the SNAD team. These datasets can serve as valuable resources for real-bogus classification, catalogue cleaning, anomaly detection, and educational purposes. Both artefacts and nominal images are provided in FITS format in two sizes (28 × 28 and 63 × 63 pixels). The datasets are publicly available for further scientific applications.</div></div>\",\"PeriodicalId\":54727,\"journal\":{\"name\":\"New Astronomy\",\"volume\":\"122 \",\"pages\":\"Article 102466\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Astronomy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1384107625001162\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Astronomy","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1384107625001162","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

在天文调查中,精确的光度测量受到图像伪影的挑战,这些伪影会影响测量结果并降低数据质量。由于大量的可用数据,这项任务越来越多地使用机器学习算法来处理,这通常需要一个标记的训练集来学习数据模式。我们提出了一个专家标记的数据集,包含来自ZTF DR3中26个领域的1127个人工制品和1213个标签,以及一组补充的标称对象。人工数据集使用SNAD团队开发的主动异常检测算法pinefforest进行编译。这些数据集可以作为真假分类、目录清理、异常检测和教育目的的宝贵资源。人工制品和标称图像都以FITS格式提供,有两种尺寸(28 × 28和63 × 63像素)。这些数据集是公开的,可用于进一步的科学应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dataset of artefacts for machine learning applications in astronomy
Accurate photometry in astronomical surveys is challenged by image artefacts, which affect measurements and degrade data quality. Due to the large amount of available data, this task is increasingly handled using machine learning algorithms, which often require a labelled training set to learn data patterns. We present an expert-labelled dataset of 1127 artefacts with 1213 labels from 26 fields in ZTF DR3, along with a complementary set of nominal objects. The artefact dataset was compiled using the active anomaly detection algorithm PineForest, developed by the SNAD team. These datasets can serve as valuable resources for real-bogus classification, catalogue cleaning, anomaly detection, and educational purposes. Both artefacts and nominal images are provided in FITS format in two sizes (28 × 28 and 63 × 63 pixels). The datasets are publicly available for further scientific applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
New Astronomy
New Astronomy 地学天文-天文与天体物理
CiteScore
4.00
自引率
10.00%
发文量
109
审稿时长
13.6 weeks
期刊介绍: New Astronomy publishes articles in all fields of astronomy and astrophysics, with a particular focus on computational astronomy: mathematical and astronomy techniques and methodology, simulations, modelling and numerical results and computational techniques in instrumentation. New Astronomy includes full length research articles and review articles. The journal covers solar, stellar, galactic and extragalactic astronomy and astrophysics. It reports on original research in all wavelength bands, ranging from radio to gamma-ray.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信