{"title":"从大型语言模型中提取知识:仇恨和反语音识别的概念瓶颈模型","authors":"Roberto Labadie-Tamayo , Djordje Slijepčević , Xihui Chen , Adrian Jaques Böck , Andreas Babic , Liz Freimann , Christiane Atzmüller , Matthias Zeppelzauer","doi":"10.1016/j.ipm.2025.104309","DOIUrl":null,"url":null,"abstract":"<div><div>The rapid increase in hate speech on social media has exposed an unprecedented impact on society, making automated methods for detecting such content important. Unlike prior black-box models, we propose a novel transparent method for automated hate and counter speech recognition, i.e., “Speech Concept Bottleneck Model” (SCBM), using adjectives as human-interpretable bottleneck concepts. SCBM leverages large language models (LLMs) to map input texts to an abstract adjective-based representation, which is then sent to a light-weight classifier for downstream tasks. Across five benchmark datasets spanning multiple languages and platforms (e.g., Twitter, Reddit, YouTube), SCBM achieves an average macro-F1 score of 0.69 which outperforms the most recently reported results from the literature on four out of five datasets. Aside from high recognition accuracy, SCBM provides a high level of both local and global interpretability. Furthermore, fusing our adjective-based concept representation with transformer embeddings, leads to a 1.8% performance increase on average across all datasets, showing that the proposed representation captures complementary information. Our results demonstrate that adjective-based concept representations can serve as compact, interpretable, and effective encodings for hate and counter speech recognition. With adapted adjectives, our method can also be applied to other NLP tasks.</div></div>","PeriodicalId":50365,"journal":{"name":"Information Processing & Management","volume":"63 2","pages":"Article 104309"},"PeriodicalIF":6.9000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distilling knowledge from large language models: A concept bottleneck model for hate and counter speech recognition\",\"authors\":\"Roberto Labadie-Tamayo , Djordje Slijepčević , Xihui Chen , Adrian Jaques Böck , Andreas Babic , Liz Freimann , Christiane Atzmüller , Matthias Zeppelzauer\",\"doi\":\"10.1016/j.ipm.2025.104309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The rapid increase in hate speech on social media has exposed an unprecedented impact on society, making automated methods for detecting such content important. Unlike prior black-box models, we propose a novel transparent method for automated hate and counter speech recognition, i.e., “Speech Concept Bottleneck Model” (SCBM), using adjectives as human-interpretable bottleneck concepts. SCBM leverages large language models (LLMs) to map input texts to an abstract adjective-based representation, which is then sent to a light-weight classifier for downstream tasks. Across five benchmark datasets spanning multiple languages and platforms (e.g., Twitter, Reddit, YouTube), SCBM achieves an average macro-F1 score of 0.69 which outperforms the most recently reported results from the literature on four out of five datasets. Aside from high recognition accuracy, SCBM provides a high level of both local and global interpretability. Furthermore, fusing our adjective-based concept representation with transformer embeddings, leads to a 1.8% performance increase on average across all datasets, showing that the proposed representation captures complementary information. Our results demonstrate that adjective-based concept representations can serve as compact, interpretable, and effective encodings for hate and counter speech recognition. With adapted adjectives, our method can also be applied to other NLP tasks.</div></div>\",\"PeriodicalId\":50365,\"journal\":{\"name\":\"Information Processing & Management\",\"volume\":\"63 2\",\"pages\":\"Article 104309\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Processing & Management\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S030645732500250X\",\"RegionNum\":1,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing & Management","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030645732500250X","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Distilling knowledge from large language models: A concept bottleneck model for hate and counter speech recognition
The rapid increase in hate speech on social media has exposed an unprecedented impact on society, making automated methods for detecting such content important. Unlike prior black-box models, we propose a novel transparent method for automated hate and counter speech recognition, i.e., “Speech Concept Bottleneck Model” (SCBM), using adjectives as human-interpretable bottleneck concepts. SCBM leverages large language models (LLMs) to map input texts to an abstract adjective-based representation, which is then sent to a light-weight classifier for downstream tasks. Across five benchmark datasets spanning multiple languages and platforms (e.g., Twitter, Reddit, YouTube), SCBM achieves an average macro-F1 score of 0.69 which outperforms the most recently reported results from the literature on four out of five datasets. Aside from high recognition accuracy, SCBM provides a high level of both local and global interpretability. Furthermore, fusing our adjective-based concept representation with transformer embeddings, leads to a 1.8% performance increase on average across all datasets, showing that the proposed representation captures complementary information. Our results demonstrate that adjective-based concept representations can serve as compact, interpretable, and effective encodings for hate and counter speech recognition. With adapted adjectives, our method can also be applied to other NLP tasks.
期刊介绍:
Information Processing and Management is dedicated to publishing cutting-edge original research at the convergence of computing and information science. Our scope encompasses theory, methods, and applications across various domains, including advertising, business, health, information science, information technology marketing, and social computing.
We aim to cater to the interests of both primary researchers and practitioners by offering an effective platform for the timely dissemination of advanced and topical issues in this interdisciplinary field. The journal places particular emphasis on original research articles, research survey articles, research method articles, and articles addressing critical applications of research. Join us in advancing knowledge and innovation at the intersection of computing and information science.