高浓度Al-Mg(6.6和9.3 at)的位错机制和力学行为。%)二元合金

IF 4.8 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Jing Su , Xiaoxiang Wu , Huan Zhao , Juan Li , Zhiming Li , Shae K. Kim , Dirk Ponge
{"title":"高浓度Al-Mg(6.6和9.3 at)的位错机制和力学行为。%)二元合金","authors":"Jing Su ,&nbsp;Xiaoxiang Wu ,&nbsp;Huan Zhao ,&nbsp;Juan Li ,&nbsp;Zhiming Li ,&nbsp;Shae K. Kim ,&nbsp;Dirk Ponge","doi":"10.1016/j.intermet.2025.108981","DOIUrl":null,"url":null,"abstract":"<div><div>Al-Mg alloys are promising structural materials due to their strong solid solution strengthening, high strain-hardening capacity, and good formability. To explore the strengthening potential of higher Mg concentrations, this study investigates a naturally aged Al-9.3 at.% Mg alloy exhibiting spinodal decomposition and compares it to a solid-solution Al-6.6 at.% Mg reference alloy. Atom probe tomography (APT) and high-resolution scanning transmission electron microscopy (STEM) reveal spinodal modulations in Al-9.3 Mg, with a dominant wavelength of 11.7 nm and a Mg fluctuation amplitude of ∼3.6 at.%. These modulations align along the &lt;100&gt; direction and generate periodic lattice distortions at the coherent, compositionally diffuse interfaces of Mg-rich and Mg-lean regions, arising from the significant atomic size mismatch (21 %) between Al and Mg atoms. Compared to AlMg6.6, the AlMg9.3 alloy exhibits significantly higher yield and ultimate tensile strengths, while maintaining similar ductility (∼32 %). Al-6.6 Mg exhibits frequent cross-slip on {111} planes, whereas Al-9.3 Mg displays wavy slip lines, and dislocation structures indicative of jogs, loops, and dipoles. The enhanced work hardening behavior observed in Al-9.3 Mg is attributed to the interactions between dislocations and spinodal structures, which hinder dislocation motion and promote dislocation accumulation. This study reveals the underlying dislocation mechanisms in spinodal modulated structures and the corresponding strengthening effects, shedding light on the development of lightweight and high-strength Al-Mg alloys with elevated Mg contents.</div></div>","PeriodicalId":331,"journal":{"name":"Intermetallics","volume":"187 ","pages":"Article 108981"},"PeriodicalIF":4.8000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dislocation mechanisms and mechanical behavior of highly concentrated Al-Mg (6.6 and 9.3 at.%) binary alloys\",\"authors\":\"Jing Su ,&nbsp;Xiaoxiang Wu ,&nbsp;Huan Zhao ,&nbsp;Juan Li ,&nbsp;Zhiming Li ,&nbsp;Shae K. Kim ,&nbsp;Dirk Ponge\",\"doi\":\"10.1016/j.intermet.2025.108981\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Al-Mg alloys are promising structural materials due to their strong solid solution strengthening, high strain-hardening capacity, and good formability. To explore the strengthening potential of higher Mg concentrations, this study investigates a naturally aged Al-9.3 at.% Mg alloy exhibiting spinodal decomposition and compares it to a solid-solution Al-6.6 at.% Mg reference alloy. Atom probe tomography (APT) and high-resolution scanning transmission electron microscopy (STEM) reveal spinodal modulations in Al-9.3 Mg, with a dominant wavelength of 11.7 nm and a Mg fluctuation amplitude of ∼3.6 at.%. These modulations align along the &lt;100&gt; direction and generate periodic lattice distortions at the coherent, compositionally diffuse interfaces of Mg-rich and Mg-lean regions, arising from the significant atomic size mismatch (21 %) between Al and Mg atoms. Compared to AlMg6.6, the AlMg9.3 alloy exhibits significantly higher yield and ultimate tensile strengths, while maintaining similar ductility (∼32 %). Al-6.6 Mg exhibits frequent cross-slip on {111} planes, whereas Al-9.3 Mg displays wavy slip lines, and dislocation structures indicative of jogs, loops, and dipoles. The enhanced work hardening behavior observed in Al-9.3 Mg is attributed to the interactions between dislocations and spinodal structures, which hinder dislocation motion and promote dislocation accumulation. This study reveals the underlying dislocation mechanisms in spinodal modulated structures and the corresponding strengthening effects, shedding light on the development of lightweight and high-strength Al-Mg alloys with elevated Mg contents.</div></div>\",\"PeriodicalId\":331,\"journal\":{\"name\":\"Intermetallics\",\"volume\":\"187 \",\"pages\":\"Article 108981\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intermetallics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0966979525003462\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intermetallics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0966979525003462","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

铝镁合金具有固溶强化强、应变硬化能力强、成形性好等优点,是一种很有发展前途的结构材料。为了探索高Mg浓度的强化潜力,本研究对自然时效的Al-9.3 at进行了研究。% Mg合金表现出spinodal分解,并将其与固溶体Al-6.6 at进行比较。% Mg基准合金。原子探针断层扫描(APT)和高分辨率扫描透射电子显微镜(STEM)显示Al-9.3 Mg中存在spinodal调制,主导波长为11.7 nm, Mg波动幅度为~ 3.6 at.%。这些调制沿着<;100>;方向排列,并在富镁和贫镁区域的相干、成分扩散界面产生周期性晶格畸变,这是由Al和Mg原子之间的显着原子尺寸不匹配(21%)引起的。与AlMg6.6相比,AlMg9.3合金表现出更高的屈服强度和极限抗拉强度,同时保持相似的延展性(~ 32%)。Al-6.6 Mg在{111}平面上表现出频繁的交叉滑移,而Al-9.3 Mg则表现出波状滑移线,以及显示缓动、环路和偶极子的位错结构。在Al-9.3 Mg中观察到的加工硬化行为的增强归因于位错和棘位结构的相互作用,这阻碍了位错的运动,促进了位错的积累。本研究揭示了螺杆调制结构中潜在的位错机制和相应的强化效应,为开发高Mg含量轻量化高强Al-Mg合金提供了参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dislocation mechanisms and mechanical behavior of highly concentrated Al-Mg (6.6 and 9.3 at.%) binary alloys
Al-Mg alloys are promising structural materials due to their strong solid solution strengthening, high strain-hardening capacity, and good formability. To explore the strengthening potential of higher Mg concentrations, this study investigates a naturally aged Al-9.3 at.% Mg alloy exhibiting spinodal decomposition and compares it to a solid-solution Al-6.6 at.% Mg reference alloy. Atom probe tomography (APT) and high-resolution scanning transmission electron microscopy (STEM) reveal spinodal modulations in Al-9.3 Mg, with a dominant wavelength of 11.7 nm and a Mg fluctuation amplitude of ∼3.6 at.%. These modulations align along the <100> direction and generate periodic lattice distortions at the coherent, compositionally diffuse interfaces of Mg-rich and Mg-lean regions, arising from the significant atomic size mismatch (21 %) between Al and Mg atoms. Compared to AlMg6.6, the AlMg9.3 alloy exhibits significantly higher yield and ultimate tensile strengths, while maintaining similar ductility (∼32 %). Al-6.6 Mg exhibits frequent cross-slip on {111} planes, whereas Al-9.3 Mg displays wavy slip lines, and dislocation structures indicative of jogs, loops, and dipoles. The enhanced work hardening behavior observed in Al-9.3 Mg is attributed to the interactions between dislocations and spinodal structures, which hinder dislocation motion and promote dislocation accumulation. This study reveals the underlying dislocation mechanisms in spinodal modulated structures and the corresponding strengthening effects, shedding light on the development of lightweight and high-strength Al-Mg alloys with elevated Mg contents.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Intermetallics
Intermetallics 工程技术-材料科学:综合
CiteScore
7.80
自引率
9.10%
发文量
291
审稿时长
37 days
期刊介绍: This journal is a platform for publishing innovative research and overviews for advancing our understanding of the structure, property, and functionality of complex metallic alloys, including intermetallics, metallic glasses, and high entropy alloys. The journal reports the science and engineering of metallic materials in the following aspects: Theories and experiments which address the relationship between property and structure in all length scales. Physical modeling and numerical simulations which provide a comprehensive understanding of experimental observations. Stimulated methodologies to characterize the structure and chemistry of materials that correlate the properties. Technological applications resulting from the understanding of property-structure relationship in materials. Novel and cutting-edge results warranting rapid communication. The journal also publishes special issues on selected topics and overviews by invitation only.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信