复杂多级聚合物行为的一种新的可变分数本构模型

IF 3.2 3区 工程技术 Q2 MECHANICS
Leixiao Wu, Wei Cai, Zhouquan Wang, Jie Yang
{"title":"复杂多级聚合物行为的一种新的可变分数本构模型","authors":"Leixiao Wu,&nbsp;Wei Cai,&nbsp;Zhouquan Wang,&nbsp;Jie Yang","doi":"10.1016/j.ijnonlinmec.2025.105255","DOIUrl":null,"url":null,"abstract":"<div><div>The mechanical behaviors of glassy polymers, including the viscoelastic and viscoplastic phases, are highly sensitive to temperature and strain rate. In order to describe such complex stress-strain responses, a variable fractional constitutive model considering temperature and strain rate effects is proposed with the order characterized by a biexponential function. Temperature and strain rate dependent criterion are established for both the elastic modulus and relaxation time, which are linearly decreasing functions of temperature. The fractional orders at different temperatures can be described by the same biexponential function, independent of temperature and strain rate, which indicates the same evolution trend during loading. The unloading behavior is subsequently characterized by shifting the order function depending on the reference unload strain. Numerical simulations show that the proposed model well describes and predicts the loading and unloading behaviors of glassy polymers. The physical interpretation of the order evolution is revealed based on the molecular chain mechanism. The validity and applicability of the model is further verified by the application of the model to different glassy polymers.</div></div>","PeriodicalId":50303,"journal":{"name":"International Journal of Non-Linear Mechanics","volume":"180 ","pages":"Article 105255"},"PeriodicalIF":3.2000,"publicationDate":"2025-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel variable fractional constitutive model for complex multistage polymeric behaviors\",\"authors\":\"Leixiao Wu,&nbsp;Wei Cai,&nbsp;Zhouquan Wang,&nbsp;Jie Yang\",\"doi\":\"10.1016/j.ijnonlinmec.2025.105255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The mechanical behaviors of glassy polymers, including the viscoelastic and viscoplastic phases, are highly sensitive to temperature and strain rate. In order to describe such complex stress-strain responses, a variable fractional constitutive model considering temperature and strain rate effects is proposed with the order characterized by a biexponential function. Temperature and strain rate dependent criterion are established for both the elastic modulus and relaxation time, which are linearly decreasing functions of temperature. The fractional orders at different temperatures can be described by the same biexponential function, independent of temperature and strain rate, which indicates the same evolution trend during loading. The unloading behavior is subsequently characterized by shifting the order function depending on the reference unload strain. Numerical simulations show that the proposed model well describes and predicts the loading and unloading behaviors of glassy polymers. The physical interpretation of the order evolution is revealed based on the molecular chain mechanism. The validity and applicability of the model is further verified by the application of the model to different glassy polymers.</div></div>\",\"PeriodicalId\":50303,\"journal\":{\"name\":\"International Journal of Non-Linear Mechanics\",\"volume\":\"180 \",\"pages\":\"Article 105255\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Non-Linear Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020746225002434\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Non-Linear Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020746225002434","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

玻璃聚合物的力学行为,包括粘弹性阶段和粘塑性阶段,对温度和应变速率高度敏感。为了描述这种复杂的应力-应变响应,提出了考虑温度和应变率影响的变分数本构模型,其阶数以双指数函数为特征。建立了弹性模量和松弛时间随温度线性递减的温度和应变率判据。不同温度下的分数阶可以用相同的双指数函数来描述,与温度和应变速率无关,表明加载过程中的演化趋势相同。卸载行为随后通过根据参考卸载应变改变阶函数来表征。数值模拟结果表明,该模型能较好地描述和预测玻璃聚合物的加载和卸载行为。基于分子链机制,揭示了有序演化的物理解释。将该模型应用于不同的玻璃聚合物,进一步验证了该模型的有效性和适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel variable fractional constitutive model for complex multistage polymeric behaviors
The mechanical behaviors of glassy polymers, including the viscoelastic and viscoplastic phases, are highly sensitive to temperature and strain rate. In order to describe such complex stress-strain responses, a variable fractional constitutive model considering temperature and strain rate effects is proposed with the order characterized by a biexponential function. Temperature and strain rate dependent criterion are established for both the elastic modulus and relaxation time, which are linearly decreasing functions of temperature. The fractional orders at different temperatures can be described by the same biexponential function, independent of temperature and strain rate, which indicates the same evolution trend during loading. The unloading behavior is subsequently characterized by shifting the order function depending on the reference unload strain. Numerical simulations show that the proposed model well describes and predicts the loading and unloading behaviors of glassy polymers. The physical interpretation of the order evolution is revealed based on the molecular chain mechanism. The validity and applicability of the model is further verified by the application of the model to different glassy polymers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.50
自引率
9.40%
发文量
192
审稿时长
67 days
期刊介绍: The International Journal of Non-Linear Mechanics provides a specific medium for dissemination of high-quality research results in the various areas of theoretical, applied, and experimental mechanics of solids, fluids, structures, and systems where the phenomena are inherently non-linear. The journal brings together original results in non-linear problems in elasticity, plasticity, dynamics, vibrations, wave-propagation, rheology, fluid-structure interaction systems, stability, biomechanics, micro- and nano-structures, materials, metamaterials, and in other diverse areas. Papers may be analytical, computational or experimental in nature. Treatments of non-linear differential equations wherein solutions and properties of solutions are emphasized but physical aspects are not adequately relevant, will not be considered for possible publication. Both deterministic and stochastic approaches are fostered. Contributions pertaining to both established and emerging fields are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信