ROBIST:通过迭代场景采样和统计测试进行稳健优化

IF 4.3 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Justin Starreveld , Guanyu Jin , Dick den Hertog , Roger J.A. Laeven
{"title":"ROBIST:通过迭代场景采样和统计测试进行稳健优化","authors":"Justin Starreveld ,&nbsp;Guanyu Jin ,&nbsp;Dick den Hertog ,&nbsp;Roger J.A. Laeven","doi":"10.1016/j.cor.2025.107260","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we propose <em>ROBIST</em>, a simple, yet effective, data-driven algorithm for optimization under parametric uncertainty. The algorithm first generates solutions in an iterative manner by sampling and optimizing over a relatively small set of scenarios. Then, using statistical testing, the robustness of the solutions is evaluated, which can be done with a much larger set of scenarios. ROBIST offers a number of practical advantages over existing methods as it is: (i) easy to implement, (ii) able to deal with a wide range of problems and (iii) capable of providing sharp probability guarantees that are easily computable and independent of the dimensions of the problem. Numerical experiments demonstrate the effectiveness of ROBIST in comparison to alternative methods.</div></div>","PeriodicalId":10542,"journal":{"name":"Computers & Operations Research","volume":"185 ","pages":"Article 107260"},"PeriodicalIF":4.3000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ROBIST: Robust optimization by iterative scenario sampling and statistical testing\",\"authors\":\"Justin Starreveld ,&nbsp;Guanyu Jin ,&nbsp;Dick den Hertog ,&nbsp;Roger J.A. Laeven\",\"doi\":\"10.1016/j.cor.2025.107260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we propose <em>ROBIST</em>, a simple, yet effective, data-driven algorithm for optimization under parametric uncertainty. The algorithm first generates solutions in an iterative manner by sampling and optimizing over a relatively small set of scenarios. Then, using statistical testing, the robustness of the solutions is evaluated, which can be done with a much larger set of scenarios. ROBIST offers a number of practical advantages over existing methods as it is: (i) easy to implement, (ii) able to deal with a wide range of problems and (iii) capable of providing sharp probability guarantees that are easily computable and independent of the dimensions of the problem. Numerical experiments demonstrate the effectiveness of ROBIST in comparison to alternative methods.</div></div>\",\"PeriodicalId\":10542,\"journal\":{\"name\":\"Computers & Operations Research\",\"volume\":\"185 \",\"pages\":\"Article 107260\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Operations Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0305054825002898\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Operations Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0305054825002898","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了ROBIST,一个简单而有效的数据驱动算法,用于参数不确定性下的优化。该算法首先通过对相对较小的场景集进行采样和优化,以迭代的方式生成解决方案。然后,使用统计测试来评估解决方案的稳健性,这可以用更大的场景集来完成。与现有方法相比,ROBIST提供了许多实际优势,因为它:(i)易于实现,(ii)能够处理广泛的问题,(iii)能够提供易于计算且独立于问题维度的明确概率保证。数值实验证明了ROBIST算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ROBIST: Robust optimization by iterative scenario sampling and statistical testing
In this paper, we propose ROBIST, a simple, yet effective, data-driven algorithm for optimization under parametric uncertainty. The algorithm first generates solutions in an iterative manner by sampling and optimizing over a relatively small set of scenarios. Then, using statistical testing, the robustness of the solutions is evaluated, which can be done with a much larger set of scenarios. ROBIST offers a number of practical advantages over existing methods as it is: (i) easy to implement, (ii) able to deal with a wide range of problems and (iii) capable of providing sharp probability guarantees that are easily computable and independent of the dimensions of the problem. Numerical experiments demonstrate the effectiveness of ROBIST in comparison to alternative methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Operations Research
Computers & Operations Research 工程技术-工程:工业
CiteScore
8.60
自引率
8.70%
发文量
292
审稿时长
8.5 months
期刊介绍: Operations research and computers meet in a large number of scientific fields, many of which are of vital current concern to our troubled society. These include, among others, ecology, transportation, safety, reliability, urban planning, economics, inventory control, investment strategy and logistics (including reverse logistics). Computers & Operations Research provides an international forum for the application of computers and operations research techniques to problems in these and related fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信