不确定流动的基于欧拉方差的有限时间李雅普诺夫指数(vFTLE)方法

IF 3.8 2区 物理与天体物理 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Guoqiao You , Wai Ming Chau , Shingyu Leung
{"title":"不确定流动的基于欧拉方差的有限时间李雅普诺夫指数(vFTLE)方法","authors":"Guoqiao You ,&nbsp;Wai Ming Chau ,&nbsp;Shingyu Leung","doi":"10.1016/j.jcp.2025.114353","DOIUrl":null,"url":null,"abstract":"<div><div>We propose a novel partial differential equation (PDE) approach for computing the variance-based finite-time Lyapunov exponent (vFTLE) in stochastic vector fields. Our method modifies and extends finite-time variance analysis (FTVA) by incorporating the covariance matrix of the probability density function (PDF) associated with each initial takeoff location. This approach allows us to utilize the maximum eigenvalue of the covariance matrix to approximate the maximal stretching rate in uncertain flows. Additionally, we enhance computational efficiency by integrating stochastic sensitivity into an Eulerian framework, enabling the identification of regions with significant vFTLE values. This combination improves both the accuracy and efficiency of analyzing complex flow dynamics in stochastic environments.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"541 ","pages":"Article 114353"},"PeriodicalIF":3.8000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Eulerian variance-based finite-time Lyapunov exponent (vFTLE) approach for flows with uncertainties\",\"authors\":\"Guoqiao You ,&nbsp;Wai Ming Chau ,&nbsp;Shingyu Leung\",\"doi\":\"10.1016/j.jcp.2025.114353\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We propose a novel partial differential equation (PDE) approach for computing the variance-based finite-time Lyapunov exponent (vFTLE) in stochastic vector fields. Our method modifies and extends finite-time variance analysis (FTVA) by incorporating the covariance matrix of the probability density function (PDF) associated with each initial takeoff location. This approach allows us to utilize the maximum eigenvalue of the covariance matrix to approximate the maximal stretching rate in uncertain flows. Additionally, we enhance computational efficiency by integrating stochastic sensitivity into an Eulerian framework, enabling the identification of regions with significant vFTLE values. This combination improves both the accuracy and efficiency of analyzing complex flow dynamics in stochastic environments.</div></div>\",\"PeriodicalId\":352,\"journal\":{\"name\":\"Journal of Computational Physics\",\"volume\":\"541 \",\"pages\":\"Article 114353\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021999125006357\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021999125006357","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种新的偏微分方程方法来计算随机向量场中基于方差的有限时间李雅普诺夫指数(vFTLE)。我们的方法通过纳入与每个初始起飞位置相关的概率密度函数(PDF)的协方差矩阵来修改和扩展有限时间方差分析(FTVA)。这种方法允许我们利用协方差矩阵的最大特征值来近似不确定流中的最大拉伸速率。此外,我们通过将随机灵敏度集成到欧拉框架中来提高计算效率,从而能够识别具有显著vFTLE值的区域。这种组合提高了在随机环境中分析复杂流动动力学的准确性和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Eulerian variance-based finite-time Lyapunov exponent (vFTLE) approach for flows with uncertainties
We propose a novel partial differential equation (PDE) approach for computing the variance-based finite-time Lyapunov exponent (vFTLE) in stochastic vector fields. Our method modifies and extends finite-time variance analysis (FTVA) by incorporating the covariance matrix of the probability density function (PDF) associated with each initial takeoff location. This approach allows us to utilize the maximum eigenvalue of the covariance matrix to approximate the maximal stretching rate in uncertain flows. Additionally, we enhance computational efficiency by integrating stochastic sensitivity into an Eulerian framework, enabling the identification of regions with significant vFTLE values. This combination improves both the accuracy and efficiency of analyzing complex flow dynamics in stochastic environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computational Physics
Journal of Computational Physics 物理-计算机:跨学科应用
CiteScore
7.60
自引率
14.60%
发文量
763
审稿时长
5.8 months
期刊介绍: Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries. The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信