神经闭环操作在清醒行为动物中的进展

IF 3.5 2区 心理学 Q1 BEHAVIORAL SCIENCES
Wenxuan Fang , Afsoon G Mombeini , Manu S Madhav
{"title":"神经闭环操作在清醒行为动物中的进展","authors":"Wenxuan Fang ,&nbsp;Afsoon G Mombeini ,&nbsp;Manu S Madhav","doi":"10.1016/j.cobeha.2025.101597","DOIUrl":null,"url":null,"abstract":"<div><div>In recent years, there has been a paradigm shift in experimental neuroscience, using emerging technologies to ‘close the loop’ around the nervous system. These experiments measure or stimulate neural activity in the brain of awake, behaving animals based on behavioral or neural variables analyzed in real time. Advancements in position tracking and miniaturized sensors enable neural stimulation to be applied based on complex behavioral or physiological variables. Machine learning can predict and validate optimal behavioral stimuli that elicit a desired neural response, and animals can even be trained to elicit specific neural patterns for reward. Advancements in simultaneous neural recording and stimulation through electrical, optical, acoustic, and chemical channels allow neural activity patterns to dictate neural stimulation. This modifies the nature of neural computation in ways that allow us to dissect and model its components. We survey and present these neural closed-loop manipulations based on their feedback modes and discuss the resultant scientific advancements and remaining challenges.</div></div>","PeriodicalId":56191,"journal":{"name":"Current Opinion in Behavioral Sciences","volume":"66 ","pages":"Article 101597"},"PeriodicalIF":3.5000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancements in neural closed-loop manipulations in awake, behaving animals\",\"authors\":\"Wenxuan Fang ,&nbsp;Afsoon G Mombeini ,&nbsp;Manu S Madhav\",\"doi\":\"10.1016/j.cobeha.2025.101597\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In recent years, there has been a paradigm shift in experimental neuroscience, using emerging technologies to ‘close the loop’ around the nervous system. These experiments measure or stimulate neural activity in the brain of awake, behaving animals based on behavioral or neural variables analyzed in real time. Advancements in position tracking and miniaturized sensors enable neural stimulation to be applied based on complex behavioral or physiological variables. Machine learning can predict and validate optimal behavioral stimuli that elicit a desired neural response, and animals can even be trained to elicit specific neural patterns for reward. Advancements in simultaneous neural recording and stimulation through electrical, optical, acoustic, and chemical channels allow neural activity patterns to dictate neural stimulation. This modifies the nature of neural computation in ways that allow us to dissect and model its components. We survey and present these neural closed-loop manipulations based on their feedback modes and discuss the resultant scientific advancements and remaining challenges.</div></div>\",\"PeriodicalId\":56191,\"journal\":{\"name\":\"Current Opinion in Behavioral Sciences\",\"volume\":\"66 \",\"pages\":\"Article 101597\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Behavioral Sciences\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352154625001160\",\"RegionNum\":2,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BEHAVIORAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Behavioral Sciences","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352154625001160","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

近年来,实验神经科学出现了范式转变,利用新兴技术来“闭合神经系统的回路”。这些实验根据实时分析的行为或神经变量,测量或刺激清醒、有行为的动物大脑中的神经活动。位置跟踪和小型化传感器的进步使得基于复杂行为或生理变量的神经刺激得以应用。机器学习可以预测和验证引发预期神经反应的最佳行为刺激,动物甚至可以通过训练来引发特定的神经模式以获得奖励。通过电、光、声和化学通道同时记录和刺激神经的进展允许神经活动模式指示神经刺激。这改变了神经计算的本质,使我们能够对其组成部分进行剖析和建模。我们调查并介绍了这些基于反馈模式的神经闭环操作,并讨论了由此产生的科学进展和仍然存在的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advancements in neural closed-loop manipulations in awake, behaving animals
In recent years, there has been a paradigm shift in experimental neuroscience, using emerging technologies to ‘close the loop’ around the nervous system. These experiments measure or stimulate neural activity in the brain of awake, behaving animals based on behavioral or neural variables analyzed in real time. Advancements in position tracking and miniaturized sensors enable neural stimulation to be applied based on complex behavioral or physiological variables. Machine learning can predict and validate optimal behavioral stimuli that elicit a desired neural response, and animals can even be trained to elicit specific neural patterns for reward. Advancements in simultaneous neural recording and stimulation through electrical, optical, acoustic, and chemical channels allow neural activity patterns to dictate neural stimulation. This modifies the nature of neural computation in ways that allow us to dissect and model its components. We survey and present these neural closed-loop manipulations based on their feedback modes and discuss the resultant scientific advancements and remaining challenges.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Opinion in Behavioral Sciences
Current Opinion in Behavioral Sciences Neuroscience-Cognitive Neuroscience
CiteScore
10.90
自引率
2.00%
发文量
135
期刊介绍: Current Opinion in Behavioral Sciences is a systematic, integrative review journal that provides a unique and educational platform for updates on the expanding volume of information published in the field of behavioral sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信